Millipore Sigma Vibrant Logo
 

cell+culture+systems


150 Results Advanced Search  
Showing
Products (0)
Documents (51)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (50)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. 21641387

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo.
    Document Type:
    Reference
    Product Catalog Number:
    CBL171
    Product Catalog Name:
    Anti-Actin Antibody, smooth muscle, clone ASM-1
  • Endothelial cell responses towards low-fouling surfaces bearing rGD in a three-dimensional environment. 21679704

    This study reveals that it is possible to obtain a specific cell response towards low-fouling carboxymethyl dextran (CMD) surfaces bearing the RGD adhesive peptide in fibrin. To avoid cell sedimentation on surfaces observed in traditional cell culture systems, CMD surfaces bearing RGD were vertically embedded in fibrin containing human umbilical vein endothelial cells (HUVEC) and their effect over cells was investigated. Compared to the CMD surfaces and to CMD layers bearing the negative control RGE, RGD coatings promoted cell adhesion, induced focal contact formation indicated by co-localization of vinculin and actin fibers, and presented a significant effect over HUVEC net growth during the first 24h of the culture, as revealed by Ki67 staining and cell counting. The intracellular localization of caveolin-1 combined with the expression of beta 1 integrins was investigated and the orientation of HUVEC towards and on the RGD surfaces was studied. When compared to the negative controls, HUVEC responded to the RGD surface in fibrin resulting in acceleration of morphological changes. RGD surfaces supported fibrin degradation by HUVEC as revealed by fluorescent fibrin experiments as well as multi-cellular structure formation, vacuolation and lumen formation.Copyright © 2011 Elsevier Inc. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    AB2910
    Product Catalog Name:
    Anti-Mcl-1 Antibody
  • Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors. 21823990

    Poly(ethylene glycol) (PEG) hydrogels are being developed as cell delivery vehicles that have great potential to improve neuronal replacement therapies. Current research priorities include (1) characterizing neural cell growth within PEG hydrogels relative to standard culture systems and (2) generating neuronal-enriched populations within the PEG hydrogel environment. This study compares the percentage of neural precursor cells (NPCs), neurons, and glia present when dissociated neural cells are seeded within PEG hydrogels relative to standard monolayer culture. Results demonstrate that PEG hydrogels enriched the initial cell population for NPCs, which subsequently gave rise to neurons, then to glia. Relative to monolayer culture, PEG hydrogels maintained an increased percentage of NPCs and a decreased percentage of glia. This neurogenic advantage of PEG hydrogels is accentuated in the presence of basic fibroblast growth factor and epidermal growth factor, which more potently increase NPC and neuronal expression markers when applied to cells cultured within PEG hydrogels. Finally, this work demonstrates that glial differentiation can be selectively eliminated upon supplementation with a γ-secretase inhibitor. Together, this study furthers our understanding of how the PEG hydrogel environment influences neural cell composition and also describes select soluble factors that are useful in generating neuronal-enriched populations within the PEG hydrogel environment.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. 20810028

    OBJECTIVES: The aim of present study is to investigate more functional neural stem cells (NSCs) could be isolated from brains with amyotrophic lateral sclerosis (ALS) and expanded in vitro, based on previous reports demonstrating de novo neurogenesis is enhanced to replace degenerating neural tissue.METHODS: Thirteen- or eighteen-week-old mutant human Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic ALS and wild-type SOD1 transgenic control mice were utilized. Changes in numbers of NSCs in the dentate gyrus were analyzed by immunohistochemistry against nestin and CD133. NSCs were primarily cultured from hippocampus of ALS or control mice. Expression of NSC markers, in vitro expansion capacity, and differentiating potential were compared.RESULTS: Hippocampus of 13-week-old pre-symptomatic ALS mice harbor more cells that can be propagated for more than 12 passages in vitro, compared with same age control mice. Primarily-cultured cells formed neurospheres in the NSC culture medium, expressed NSC markers, and differentiated into cells with differentiated neural cell characteristics in the differentiation condition confirming that they are NSCs. In contrast, long-term expansible NSCs could not be derived from brains of 18-week-old symptomatic ALS mice with the same experimental techniques, although they had comparable nestin-immunoreactive cells in the dentate gyrus.DISCUSSION: These results would suggest that increased neuroregeneration in early phase of ALS could be translated to regenerative approaches; however, long-term exposure to ALS microenvironments could abolish functional capacities of NSCs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. 18676377

    In previous studies, we determined that beta1 integrins from human colon tumors have elevated levels of alpha2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha2-6 sialylation of the beta1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha2-6 sialylation exhibit beta1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha2-6-sialylated, beta1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes (unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta1 subunit, suggesting that beta1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. 24200967

    GFP and luciferase are used extensively as markers both in vitro and in vivo although both have limitations. The utility of GFP fluorescence is restricted by high background signal and poor tissue penetrance. Luciferase throughput is limited in vitro by the requirement for cell lysis, while in vivo, luciferase readout is complicated by the need for substrate injection and the dependence on endogenous ATP. Here we show that near-infrared fluorescent protein in combination with widely available near-infrared scanners overcomes these obstacles and allows for the accurate determination of cell number in vitro and tumor growth in vivo in a high-throughput manner and at negligible per-well costs. This system represents a significant advance in tracking cell proliferation in tissue culture as well as in animals, with widespread applications in cell biology.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4
  • Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo. 16303979

    The present study examined the effects of riluzole, a Food and Drug Administration-approved drug for amyotrophic lateral sclerosis, on VEGF-stimulated endothelial cell proliferation in culture, and on neovascularization in a rat model of retinopathy of prematurity (ROP).Human umbilical vein endothelial cell and bovine retinal endothelial cell cultures were treated with VEGF to induce endothelial cell proliferation in the presence or absence of riluzole. Activation of PKC betaII was examined by quantifying its phosphorylated form on immunoblots. ROP was induced in 5-day-old rat pups by raising them in hyperoxic conditions for 7 days and in normoxic conditions for the next 5 days. Dextran fluorescence retinal angiography was used to quantitatively assess ROP.Riluzole inhibited VEGF-stimulated PKC betaII activation and cell proliferation in bovine retinal endothelial cell and human umbilical vein endothelial cell cultures. In addition, systemic administration of riluzole substantially ameliorated abnormal new vessel formation in the rat ROP model.The present results suggest that riluzole is a potent inhibitor of VEGF-induced endothelial cell proliferation both in vivo and in vitro. Since long-term use of riluzole has already been proven safe in humans, the present data indicate that clinical trials of riluzole for proliferative retinopathies should be implemented expeditiously.
    Document Type:
    Reference
    Product Catalog Number:
    06-870
  • IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. 22251702

    HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimental systems. Here, we show that IFN-α inhibits HBV replication by decreasing the transcription of pregenomic RNA (pgRNA) and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome, both in cultured cells in which HBV is replicating and in mice whose livers have been repopulated with human hepatocytes and infected with HBV. Administration of IFN-α resulted in cccDNA-bound histone hypoacetylation as well as active recruitment to the cccDNA of transcriptional corepressors. IFN-α treatment also reduced binding of the STAT1 and STAT2 transcription factors to active cccDNA. The inhibitory activity of IFN-α was linked to the IRSE, as IRSE-mutant HBV transcribed less pgRNA and could not be repressed by IFN-α treatment. Our results identify a molecular mechanism whereby IFN-α mediates epigenetic repression of HBV cccDNA transcriptional activity, which may assist in the development of novel effective therapeutics.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: molecular and phenotypic characteristics. 12065682

    In vitro model systems for studying uterine leiomyomas are limited in that human-derived leiomyoma cells grow poorly in culture compared with normal myometrial cells and begin to senesce early, at approximately passage 10 in our studies. To our knowledge, a good in vitro human-derived cell culturing system for leiomyomas does not exist. In an attempt to fill this void, we have immortalized a uterine leiomyoma cell line by inducing telomerase activity, which allows cells to bypass their normal programmed senescence. Telomerase activity was induced by infecting the target (uterine leiomyoma and normal myometrial) cells with a retroviral vector containing hTERT, the gene for the catalytic subunit of telomerase. Subsequent analysis by RT-PCR and the telomeric repeat amplification protocol assay confirmed expression of the inserted gene and induction of telomerase activity in leiomyoma and myometrial cells. Analysis of cells for estrogen receptor-alpha and progesterone receptor proteins by Western blotting showed no change in expression of these proteins between the immortalized and parental leiomyoma and myometrial cells. Both immortalized and parental myometrial and leiomyoma cells expressed the smooth muscle-specific cytoskeletal protein alpha-actin and were negative for mutant p53 protein as evidenced by immunocytochemical staining. The immortalized leiomyoma and myometrial cells showed no anchorage-independent growth, with the exception of a small subpopulation of immortalized leiomyoma cells at a higher passage that did form two to three small colonies (per 50,000 cells) in soft agar. None of the immortalized cells were tumorigenic in nude mice. In conclusion, our data show the successful insertion of the hTERT gene into leiomyoma and myometrial cells and the immortalization of these cell lines without phenotypic alteration from the parental cell types (up to 200 population doublings). These cells should help to advance research in understanding the molecular pathways involved in the conversion of a normal myometrial cell to a leiomyoma cell and the mechanisms responsible for the growth of uterine leiomyomas. Answers to these questions will undoubtedly lead to the development of more effective treatment and intervention regimens for clinical cases of uterine leiomyoma.
    Document Type:
    Reference
    Product Catalog Number:
    12-565
    Product Catalog Name:
    Trimethyl-Histone H3 (Lys27) Peptide, biotin conjugate