Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

g+protein+and+gpcr


52 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. 21768377

    GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα(12/13) family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.
    Document Type:
    Reference
    Product Catalog Number:
    MABN310
    Product Catalog Name:
    Anti-G-protein coupled receptor 56 (GPR56) Antibody, clone H11
  • G(i)-coupled GPCR signaling controls the formation and organization of human pluripotent colonies. 19936228

    Reprogramming adult human somatic cells to create human induced pluripotent stem (hiPS) cell colonies involves a dramatic morphological and organizational transition. These colonies are morphologically indistinguishable from those of pluripotent human embryonic stem (hES) cells. G protein-coupled receptors (GPCRs) are required in diverse developmental processes, but their role in pluripotent colony morphology and organization is unknown. We tested the hypothesis that G(i)-coupled GPCR signaling contributes to the characteristic morphology and organization of human pluripotent colonies.Specific and irreversible inhibition of G(i)-coupled GPCR signaling by pertussis toxin markedly altered pluripotent colony morphology. Wild-type hES and hiPS cells formed monolayer colonies, but colonies treated with pertussis toxin retracted inward, adopting a dense, multi-layered conformation. The treated colonies were unable to reform after a scratch wound insult, whereas control colonies healed completely within 48 h. In contrast, activation of an alternative GPCR pathway, G(s)-coupled signaling, with cholera toxin did not affect colony morphology or the healing response. Pertussis toxin did not alter the proliferation, apoptosis or pluripotency of pluripotent stem cells.Experiments with pertussis toxin suggest that G(i) signaling plays a critical role in the morphology and organization of pluripotent colonies. These results may be explained by a G(i)-mediated density-sensing mechanism that propels the cells radially outward. GPCRs are a promising target for modulating the formation and organization of hiPS and hES cell colonies and may be important for understanding somatic cell reprogramming and for engineering pluripotent stem cells for therapeutic applications.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A switch of G protein-coupled receptor binding preference from phosphoinositide 3-kinase (PI3K)-p85 to filamin A negatively controls the PI3K pathway. 22203038

    Frequent oncogenic alterations occur in the phosphoinositide 3-kinase (PI3K) pathway, urging identification of novel negative controls. We previously reported an original mechanism for restraining PI3K activity, controlled by the somatostatin G protein-coupled receptor (GPCR) sst2 and involving a ligand-regulated interaction between sst2 with the PI3K regulatory p85 subunit. We here identify the scaffolding protein filamin A (FLNA) as a critical player regulating the dynamic of this complex. A preexisting sst2-p85 complex, which was shown to account for a significant basal PI3K activity in the absence of ligand, is disrupted upon sst2 activation. FLNA was here identified as a competitor of p85 for direct binding to two juxtaposed sites on sst2. Switching of GPCR binding preference from p85 toward FLNA is determined by changes in the tyrosine phosphorylation of p85- and FLNA-binding sites on sst2 upon activation. It results in the disruption of the sst2-p85 complex and the subsequent inhibition of PI3K. Knocking down FLNA expression, or abrogating FLNA recruitment to sst2, reversed the inhibition of PI3K and of tumor growth induced by sst2. Importantly, we report that this FLNA inhibitory control on PI3K can be generalized to another GPCR, the mu opioid receptor, thereby providing an unprecedented mechanism underlying GPCR-negative control on PI3K.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1678
    Product Catalog Name:
    Anti-Filamin A Antibody, clone PM6/317
  • G protein-coupled receptor kinase-mediated desensitization of metabotropic glutamate receptor 1A protects against cell death. 10982802

    Metabotropic glutamate receptors (mGluRs) constitute a unique subclass of G protein-coupled receptors (GPCRs) that bear little sequence homology to other members of the GPCR superfamily. The mGluR subtypes that are coupled to the hydrolysis of phosphoinositide contribute to both synaptic plasticity and glutamate-mediated excitotoxicity in neurons. In the present study, the expression of mGluR1a in HEK 293 cells led to agonist-independent cell death. Since G protein-coupled receptor kinases (GRKs) desensitize a diverse variety of GPCRs, we explored whether GRKs contributed to the regulation of both constitutive and agonist-stimulated mGluR1a activity and thereby may prevent mGluR1a-mediated excitotoxicity associated with mGluR1a overactivation. We find that the co-expression of mGluR1a with GRK2 and GRK5, but not GRK4 and GRK6, reduced both constitutive and agonist-stimulated mGluR1a activity. Agonist-stimulated mGluR1a phosphorylation was enhanced by the co-expression of GRK2 and was blocked by two different GRK2 dominant-negative mutants. Furthermore, GRK2-dependent mGluR1a desensitization protected against mGluR1a-mediated cell death, at least in part by blocking mGluR1a-stimulated apoptosis. Our data indicate that as with other members of the GPCR superfamily, a member of the structurally distinct mGluR family (mGluR1a) serves as a substrate for GRK-mediated phosphorylation and that GRK-dependent "feedback" modulation of mGluR1a responsiveness protects against pathophysiological mGluR1a signaling.
    Document Type:
    Reference
    Product Catalog Number:
    07-617
    Product Catalog Name:
    Anti-mGluR1 Antibody
  • Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. 9122168

    The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components.
    Document Type:
    Reference
    Product Catalog Number:
    05-465
    Product Catalog Name:
    Anti-GRK 2/3 (βARK 1/2) Antibody, clone C5/1.1
  • Differential PKC-dependent and -independent PKD activation by G protein α subunits of the Gq family: selective stimulation of PKD Ser⁷⁴⁸ autophosphorylation by Gαq. 22227248

    Protein kinase D (PKD) is activated within cells by stimulation of multiple G protein coupled receptors (GPCR). Earlier studies demonstrated a role for PKC to mediate rapid activation loop phosphorylation-dependent PKD activation. Subsequently, a novel PKC-independent pathway in response to Gαq-coupled GPCR stimulation was identified. Here, we examined further the specificity and PKC-dependence of PKD activation using COS-7 cells cotransfected with different Gq-family Gα and stimulated with aluminum fluoride (AlF4⁻). PKD activation was measured by kinase assays, and Western blot analysis of activation loop sites Ser⁷⁴⁴, a prominent and rapid PKC transphosphorylation site, and Ser⁷⁴⁸, a site autophosphorylated in the absence of PKC signaling. Treatment with AlF4⁻ potently induced PKD activation and Ser⁷⁴⁴ and Ser⁷⁴⁸ phosphorylation, in the presence of cotransfected Gαq, Gα11, Gα14 or Gα15. These treatments achieved PKD activation loop phosphorylation similar to the maximal levels obtained by stimulation with the phorbol ester, PDBu. Preincubation with the PKC inhibitor GF1 potently blocked Gα11-, Gα14-, and Gα15-mediated enhancement of Ser⁷⁴⁸ phosphorylation induced by AlF4⁻, and largely abolished Ser⁷⁴⁴ phosphorylation. In contrast, Ser⁷⁴⁸ phosphorylation was almost completely intact, and Ser⁷⁴⁴ phosphorylation was significantly activated in cells cotransfected with Gαq. Importantly, the differential Ser⁷⁴⁸ phosphorylation was also promoted by treatment of Swiss 3T3 cells with Pasteurella multocida toxin, a selective activator of Gαq but not Gα11. Taken together, our results suggest that Gαq, but not the closely related Gα11, promotes PKD activation in response to GPCR ligands in a unique manner leading to PKD autophosphorylation at Ser⁷⁴⁸.
    Document Type:
    Reference
    Product Catalog Number:
    07-882
  • A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechan ... 18198212

    Orexins acting at the G protein-coupled receptor (GPCR) OX1R have recently been shown to promote dramatic apoptosis in cancer cells. We report here that orexin-induced apoptosis is driven by an immunoreceptor tyrosine-based inhibitory motif (ITIM) (IIY(358)NFL) present in the OX1R. This effect is mediated by SHP-2 phosphatase recruitment via a mechanism that requires Gq protein but is independent of phospholipase C activation. This is based on the following observations: 1) mutation of Y(358) into F abolished orexin-induced tyrosine phosphorylation in ITIM, orexin-induced apoptosis, and uncoupled OX1R from Gq protein in transfected Chinese hamster ovary (CHO) cells; 2) orexin-induced apoptosis in CHO cells expressing recombinant OX1R and in colon cancer cells expressing the native receptor was abolished by treatment with the tyrosine phosphatase inhibitor PAO and by transfection with a dominant-negative mutant of SHP-2; 3) orexins were unable to promote apoptosis in fibroblast cells invalidated for the G alpha q subunit and transfected with OX1R cDNA, whereas they promoted apoptosis in cells equipped with G alpha q and OX1R; and 4) the phospholipase C inhibitor U-73122 blocked orexin-stimulated inositol phosphate formation, whereas it had no effect on orexin-induced apoptosis in CHO cells expressing OX1R. These data unravel a novel mechanism, whereby ITIM-expressing GPCRs may trigger apoptosis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A rapid and efficient immunoenzymatic assay to detect receptor protein interactions: G protein-coupled receptors. 24733071

    G protein-coupled receptors (GPCRs) represent one of the largest families of cell surface receptors, and are the target of at least one-third of the current therapeutic drugs on the market. Along their life cycle, GPCRs are accompanied by a range of specialized GPCR-interacting proteins (GIPs), which take part in receptor proper folding, targeting to the appropriate subcellular compartments and in receptor signaling tasks, and also in receptor regulation processes, such as desensitization and internalization. The direction of protein-protein interactions and multi-protein complexes formation is crucial in understanding protein function and their implication in pathological events. Although several methods have been already developed to assay protein complexes, some of them are quite laborious, expensive, and, more important, they do not generate fully quantitative results. Herein, we show a rapid immunoenzymatic assay to quantify GPCR interactionswith its signaling proteins. The recently de-orphanized GPCR, GPR17, was chosen as a GPCR prototype to optimize the assay. In a GPR17 transfected cell line and primary oligodendrocyte precursor cells, GPR17 interaction with proteins involved in the typical GPCR regulation, such as desensitization and internalization machinery, was investigated. The obtained results were validated by co-immunoprecipitation experiments, confirming this new method as a rapid and quantitative assay to study protein-protein interactions.
    Document Type:
    Reference
    Product Catalog Number:
    05-904
    Product Catalog Name:
    Anti-HA Tag Antibody
  • An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina. 24349243

    In the outer retina, G protein-coupled receptor (GPCR) signaling mediates phototransduction and synaptic transmission between photoreceptors and ON bipolar cells. In contrast, the functions of modulatory GPCR signaling networks in the inner retina are less well understood. We addressed this question by determining the consequences of augmenting modulatory Gi/o signaling driven by endogenous transmitters. This was done by analyzing the effects of genetically ablating the R7 RGS-binding protein (R7BP), a membrane-targeting protein and positive allosteric modulator of R7-RGS (regulator of the G protein signaling 7) family that deactivates Gi/oα subunits. We found that R7BP is expressed highly in starburst amacrine cells and retinal ganglion cells (RGCs). As indicated by electroretinography and multielectrode array recordings of adult retina, ablation of R7BP preserved outer retina function, but altered the firing rate and latency of ON RGCs driven by rods and cones but not rods alone. In developing retina, R7BP ablation increased the burst duration of glutamatergic waves whereas cholinergic waves were unaffected. This effect on glutamatergic waves did not result in impaired segregation of RGC projections to eye-specific domains of the dorsal lateral geniculate nucleus. R7BP knockout mice exhibited normal spatial contrast sensitivity and visual acuity as assessed by optomotor reflexes. Taken together these findings indicate that R7BP-dependent regulation of R7-RGS proteins shapes specific aspects of light-evoked and spontaneous activity of RGCs in mature and developing retina.
    Document Type:
    Reference
    Product Catalog Number:
    AB143
    Product Catalog Name:
    Anti-Choline Acetyltransferase (ChAT) Antibody
  • Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. 21806555

    The existence of G protein-coupled receptor (GPCR) dimers and/or oligomers has been demonstrated in heterologous systems using a variety of biochemical and biophysical assays. While these interactions are the subject of intense research because of their potential role in modulating signaling and altering pharmacology, evidence for the existence of receptor interactions in vivo is still elusive because of a lack of appropriate methods to detect them. Here, we adapted and optimized a proximity ligation assay (PLA) for the detection in brain slices of molecular proximity of two antigens located on either the same or two different GPCRs. Using this approach, we were able to confirm the existence of dopamine D2 and adenosine A2A receptor complexes in the striatum of mice ex vivo.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple