Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Technical Information: Quantification and localization of carbon-based nanomaterials using the ImageStream Imaging Flow Cytometer, Contributed by Florence Gazeau, Iris Marangon and Nicole Boggetto, Université Paris Diderot / CNRS
The field of nanotechnology is broad and includes studies performed in cells with materials from 1 to 100 nanometers. Many different types of experiments are being perfomed in cells with nanomaterials such as the uptake and intracellular fate of nanoparticle-drug delivery vehicles, or antibody functionalized capsules to name a few. The Imagestream®x is uniquely configured to detect and localize these small particles in cells.
Label-Free Detection and Quantification of Intracellular Carbon Nanotubes
Marangon I,et al.Nano Lett. 2012 Sep 12;12(9):4830-7. Epub 2012 Sep 4. Figure 2 Imaging flow cytometry analysis of CNT uptake by EC. (a) Examples of images captured by ImageStream®x on the bright-field, FITC, and dark-field channels and their overlays for EC labeled with 50 μg/mL of CNTs. Black spots on bright-field images show colocalization with the bright spots on dark-field images. (b) Mean signal on fluorescence (FITC) and dark-field images and mean pixel signal on bright-field image analyzed for 7000 cells show a significant increase with the CNT labeling concentration. Results are mean ± standard error of the mean (s.e.m) normalized to that of control nonlabeled cells, representative of three independent experiments (n = 3). (c) Dark-field intensity correlates with the bright-field mean pixel signal to quantify CNTs in cells. Values from 7000 cells are plotted with increasingly dark blue for increasing CNT labeling concentrations. Gray dots correspond to nonlabeled cells. Pearson correlation coefficient r = −0.68 for EC labeled with 50 μg/mL. (d) Percentage of cell population that are positive for both their dark-field intensity (DF+) and bright-field mean pixel signal (BF+) compared to the gate of control cells in the bivariate dot plot (c) and thus considered as CNT-labeled cells. Percentage are mean ± s.e.m. (n = 3).