Millipore Sigma Vibrant Logo
 

202920-22-7


217 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (217)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Inbred testing of tomato (Lycopersicon esculentum L.) F1 varieties by ultrathin-layer isoelectric focusing of seed protein. 2079022

    To test seed lots of tomato F1 hybrid varieties for the presence of undesirable inbred seeds by electrophoresis, a method has been developed on the basis of ultrathin-layer isoelectric focusing. The method is based on the genetic variation of the seed protein PRS-1 which could be visualized by isoelectric focusing of a 5 mM NaCl-soluble seed protein extract in a pH 6-9 gel followed by protein staining. Two genetic variants of the PRS-1 protein, PRS-1+ and PRS-1(1), were found among open-pollinated varieties, as well as among F1 hybrid varieties. The isoelectric points (pI) of the PRS-1 proteins are 7.1 and 6.1 for PRS-1+ and PRS-1(1), respectively. The PRS-1 protein is unique to seed tissue and is located primarily in the embryo. A genetic 1:2:1 segregation of the gene Prs-1 among several F2 populations shows monogenic inheritance. Analysis of commercial F1 hybrid varieties from several seed companies indicated that the Prs-1(1) allele, in contrast to the Prs-1+ allele, is primarily present in gene pools of Money-maker type tomatoes. The described method is generally applicable to all tomato F1 varieties that are heterozygous for the gene Prs-1. With the described method one person can routinely analyze more than 768 seeds per day.
    Document Type:
    Reference
    Product Catalog Number:
    17-191
    Product Catalog Name:
    MAP Kinase/Erk Assay Kit, non-radioactive
  • Distribution and role of Na(+)/K(+) ATPase in endocardial endothelium. 11738066

    OBJECTIVE: In mammalian cardiomyocytes, alpha isoforms of Na(+)/K(+) ATPase have specific localisation and function, but their role in endocardial endothelium is unknown. METHODS: Different alpha isoforms in endocardial endothelium and cardiomyocytes of rabbit were investigated by measuring contractile parameters of papillary muscles, by RT-PCR, by Western blots and by immunocytochemistry. RESULTS: Inhibition of Na(+)/K(+) ATPase by decreasing external K(+) from 5.0 to 0.5 mmol/l caused biphasic inotropic effects. The maximal negative inotropic effect at external K(+) of 2.5 mmol/l was significantly larger in +EE muscles (with intact endocardial endothelium) than in -EE muscles (with endocardial endothelium removed) (-22.5+/-2.4% versus -5.9+/-4.0%, n=7, P0.05). Further decrease of K(+) to 0.5 mmol/l caused endothelium-independent positive inotropy (27.8+/-11.8% for +EE versus 18.6+/-11.3% for -EE, n=7, P>0.05). Inhibition of Na(+)/K(+) ATPase either by dihydro-ouabain (10(-9) to 10(-4) mol/l, n=4) or by K(+) decrease following inhibition of Na(+)-H(+) exchanger by dimethyl-amiloride (50 micromol/l, n=6) caused endothelium-independent positive inotropic effects only. RT-PCR and Western Blot demonstrated alpha(1) and alpha(2) Na-K-ATPase isoforms in cardiomyocytes, but only alpha(1) in cultured endocardial endothelial cells. Immunohistochemistry showed that alpha(1) in endocardial endothelium was predominantly present at the luminal side of the cell (n=7) and that alpha(1) and alpha(2) displayed different localisation in cardiomyocytes. CONCLUSIONS: These results suggested that negative and positive inotropic effects of Na(+)/K(+) ATPase inhibition in +EE muscles could be attributed to inhibition of endocardial endothelial alpha(1) and muscle alpha(2) isoform, respectively. Accordingly, the endocardial endothelial alpha(1) isoform of Na(+)/K(+) ATPase may contribute to blood-heart barrier properties of this endothelium and may control cardiac performance via endothelial Na(+)/H(+) exchange.
    Document Type:
    Reference
    Product Catalog Number:
    3140
  • Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space. 14638746

    PURPOSE: To investigate the differentiation of rat neural stem cells (rNSCs) into cells of retinal pigment epithelial (RPE) lineage both in vitro and in vivo, after subretinal transplantation into normal rats and in a sodium iodate (NaIO(3)) model of RPE loss. METHODS: rNSCs prepared from the cortex of embryonic day (E)14 Fisher F344 rats were cocultured with different concentrations of vasoactive intestinal peptide (VIP), adult rat RPE cells, or neurosensory retina (NSR) for 5 days. Cell morphology and expression of RPE-specific markers (cytokeratin, CD68, microphthalmia-inducing transcription factor [MITF]) were studied. Additional antibodies used to characterize the rNSCs were markers for stem cells (nestin), immature neurons (betaIII-tubulin), astrocytes (glial fibrillary acidic protein [GFAP]), and oligodendrocytes (Rip). In in vivo studies, 10(6) green fluorescent protein [GFP]-labeled rNSCs were injected subretinally in either normal adult Lewis rats or NaIO(3)-treated rats (70 mg/mL NaIO(3) administered intravenously 7 days before transplantation). RESULTS: In vitro VIP-treated rNSCs changed from round cells to glia-like cells with processes that stained for both GFAP and nestin. In addition, small clusters of flattened, polygonal cells with an epithelial-cell-like shape that stained for cytokeratin and CD68 were observed. Coculture of rNSCs with RPE cells, but not with NSR, also led to cells of this phenotype. After transplantation, nestin(+) and GFP(+) rNSCs were visible subretinally as a transplant. In addition, more than 50% of transplanted rNSCs were cytokeratin(+) and CD68(+). CONCLUSIONS: Very few rNSCs differentiate in vitro into epithelial-like cells that express RPE-specific markers. In vivo, this differentiation is remarkably enhanced after subretinal engraftment. Thus, transplantation of NSCs into the subretinal space may be a therapy for retinal diseases involving an RPE abnormality.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1580
    Product Catalog Name:
    Anti-Oligodendrocytes Antibody, clone NS-1
  • Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. 21955614

    Microarrays identified miRNAs differentially expressed and 4-hydroxytamoxifen (4-OHT) regulated in MCF-7 endocrine-sensitive versus resistant LY2 human breast cancer cells. 97 miRNAs were differentially expressed in MCF-7 versus LY2 cells. Opposite expression of miRs-10a, 21, 22, 29a, 93, 125b, 181, 200a, 200b, 200c, 205, and 222 was confirmed. Bioinformatic analyses to impute the biological significance of these miRNAs identified 36 predicted gene targets from those regulated by 4-OHT in MCF-7 cells. Agreement in the direction of anticipated regulation was detected for 12 putative targets. These miRNAs with opposite expression between the two cell lines may be involved in endocrine resistance.
    Document Type:
    Reference
    Product Catalog Number:
    04-642
    Product Catalog Name:
    Anti-Ago2 Antibody, clone 9E8.2
  • Alterations in the common fragile site gene Parkin in ovarian and other cancers. 14614460

    The cloning and characterization of the common fragile site (CFS) FRA6E (6q26) identified Parkin, the gene involved in the pathogenesis of many cases of juvenile, early-onset and, rarely, late-onset Parkinson's disease, as the third large gene to be localized within a large CFS. Initial analyses of Parkin indicated that in addition to playing a role in Parkinson's disease, it might also be involved in the development and/or progression of ovarian cancer. These analyses also indicated striking similarities among the large CFS-locus genes: fragile histidine triad gene (FHIT; 3p14.2), WW domain-containing oxidoreductase gene (WWOX; 16q23), and Parkin (6q26). Analyses of FHIT and WWOX in a variety of different cancer types have identified the presence of alternative transcripts with whole exon deletions. Interestingly, various whole exon duplications and deletions have been identified for Parkin in juvenile and early-onset Parkinson's patients. Therefore, we performed mutational/exon rearrangement analysis of Parkin in ovarian cancer cell lines and primary tumors. Four (66.7%) cell lines and four (18.2%) primary tumors were identified as being heterozygous for the duplication or deletion of a Parkin exon. Additionally, three of 23 (13.0%) nonovarian tumor-derived cell lines were also identified as having a duplication or deletion of one or more Parkin exons. Analysis of Parkin protein expression with antibodies revealed that most of the ovarian cancer cell lines and primary tumors had diminished or absent Parkin expression. While functional analyses have not yet been performed for Parkin, these data suggest that like FHIT and WWOX, Parkin may represent a tumor suppressor gene.
    Document Type:
    Reference
    Product Catalog Number:
    AB5112
    Product Catalog Name:
    Anti-Parkin Antibody, a.a. 305-323
  • Neuron numbers in the sensory trigeminal nuclei of the rat: A GABA- and glycine-immunocytochemical and stereological analysis. 16304625

    The volume, total neuron number, and number of GABA- and glycine-expressing neurons in the sensory trigeminal nuclei of the adult rat were estimated by stereological methods. The mean volume is 1.38+/-0.13 mm3 (mean+/-SD) for the principal nucleus (Vp), 1.59+/-0.06 for the n. oralis (Vo), 2.63+/-0.34 for the n. interpolaris (Vip), and 3.73+/-0.11 for the n. caudalis (Vc). The total neuron numbers are 31,900+/-2,200 (Vp), 21,100+/-3,300 (Vo), 61,600+/-8,300 (Vip), and 159,100+/-25,300 (Vc). Immunoreactive (-ir) neurons were classified as strongly stained or weakly stained, depending on qualitative criteria, cross-checked by a densitometric analysis. GABA-ir cells are most abundant in Vc, in an increasing rostrocaudal gradient within the nucleus. Lower densities are found in Vip and Vp. The mean total number of strongly labeled GABA-ir neurons ranges between 1,800 in Vp to 7,800 in Vip and 22,900 in Vc, and varies notably between subjects. Glycine-ir neurons are more numerous and display more homogeneous densities in all nuclei. Strongly labeled Gly-ir cells predominate in all nuclei, their total number ranging between 9,400 in Vp to 24,300 in Vip and 34,200 in Vc. A substantial fraction of immunolabeled neurons in all nuclei coexpress GABA and glycine. In general, all neurons strongly immunoreactive for GABA are small, while weakly GABA-ir cells which coexpress Gly are larger. In Vc, one-third of all neurons are immunoreactive: 16.6% of them are single-labeled for GABA and 31.6% are single-labeled for glycine. The remaining 51.8% express GABA and glycine in different combinations, with those showing strong double labeling accounting for 22.6%.
    Document Type:
    Reference
    Product Catalog Number:
    AB139
    Product Catalog Name:
    Anti-Glycine Antibody
  • Matrix metalloproteinases in the restorative proctocolectomy pouch of pediatric ulcerative colitis. 22912554

    To investigate matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in pouch mucosa of pediatric onset ulcerative colitis (UC).In this cross-sectional study, 28 patients with pediatric onset UC underwent ileal pouch biopsy 13 years (median) after proctocolectomy. Expression of MMPs-3, -7, -8, -9, -12 and -26 and TIMPs-1, -2 and -3 in samples was examined using immunohistochemichal methods, and another biopsy was used to evaluate the grade of histological inflammation. Two investigators independently graded the immunohistochemical specimens in a semiquantitative fashion, using a scale marking staining intensity as follows: 0 = less than 20 positive cells; 1 = 20-50 positive cells; 2 = 50-200 positive cells; 3 = over 20 positive cells. Fecal calprotectin and blood inflammatory markers [serum C-reactive protein (CRP) and erythrocyte sedimentation rate] were determined during a follow-up visit to examine correlations between these markers and the expression of MMPs and TIMPs.Of the 28 patients with pediatric onset UC, nine had not experienced pouchitis, whereas thirteen reported a single episode, and six had recurrent pouchitis (≥ 4 episodes). At the time of the study, six patients required metronidazole. In all of the others, the most recent episode of pouchitis had occurred over one month earlier, and none were on antibiotics. Only four samples depicted no sign of inflammation, and these were all from patients who had not had pouchitis. Two samples were too small to determine the grade of inflammation, but both had suffered pouchitis, the other recurrent. No sample depicted signs of colonic metaplasia. Most pouch samples showed expression of epithelial (e) and stromal (s) MMP-3 (e, n = 22; s, n = 20), MMP-7 (e, n = 28; s, n = 27), MMP-12 (e, n = 20; s, n =24), TIMP-2 (e, n = 23; s, n = 23) and MMP-3 (e, n = 23; s, n = 28) but MMP-8 (e, n = 0; s, n = 1), MMP-9 (e, n = 0; s, n = 9) and MMP-26 (e, n = 0; s, n = 3) and TIMP-1 (n = 0, both) were lacking. In samples with low grade of inflammatory activity, the epithelial MMP-3 and MMP-7 expression was increased (r = -0.614 and r = -0.472, respectively, P less than 0.05 in both). MMPs and TIMPs did not correlate with the markers of inflammation, fecal calprotectin, erythrocyte sedimentation rate, or CRP, with the exception of patients with low fecal calprotectin (less than 100 μg/g) in whom a higher expression of epithelial MMP-7 was found no differences in MMP- or TIMP-profiles were seen in patients with a history of pouchitis compared to ones with no such episodes. Anastomosis with either straight ileoanal anastomosis or ileoanal anastomosis with J-pouch did depict differences in MMP- or TIMP-expression.The expression of MMPs pediatric UC pouch in the long-term shares characteristics with inflammatory bowel disease, but inflammation cannot be classified as a reactivation of the disease.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3315
    Product Catalog Name:
    Anti-MMP-7 Antibody, clone 141-7B2
  • Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. 17209956

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.
    Document Type:
    Reference
    Product Catalog Number:
    MAB382
    Product Catalog Name:
    Anti-Myelin Basic Protein Antibody, a.a. 129-138, clone 1
  • Association of hepatocyte-derived growth factor receptor/caudal type homeobox 2 co-expression with mucosal regeneration in active ulcerative colitis. 26229399

    To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor (HGFR)-expressing cells in active ulcerative colitis (UC).On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected. After preparing tissue microarrays and blood smears HGFR, caudal type homeobox 2 (CDX2), prominin-1 (CD133) and Musashi-1 conventional and double fluorescent immunolabelings were performed. Immunostained samples were digitalized using high-resolution Mirax Desk instrument, and analyzed with the Mirax TMA Module software. For semiquantitative counting of immunopositive lamina propria (LP) cells 5 fields of view were counted at magnification × 200 in each sample core, then mean ± SD were determined. In case of peripheral blood smears, 30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells (mean ± SD) was determined. Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected. Gene expression analysis of HGFR, CDX2, CD133, leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), Musashi-1 and cytokeratin 20 (CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction (RT-PCR).By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR, higher number of HGFR (blood: 6.7 ± 1.22 vs 38.5 ± 3.18; LP: 2.25 ± 0.85 vs 9.22 ± 0.65; P less than 0.05), CDX2 (blood: 0 vs 0.94 ± 0.64; LP: 0.75 ± 0.55 vs 2.11 ± 0.75; P less than 0.05), CD133 (blood: 1.1 ± 0.72 vs 8.3 ± 1.08; LP: 11.1 ± 0.85 vs 26.28 ± 1.71; P less than 0.05) and Musashi-1 (blood and LP: 0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls. HGFR/CDX2 (blood: 0 vs 1 ± 0.59; LP: 0.8 ± 0.69 vs 2.06 ± 0.72, P less than 0.05) and Musashi-1/CDX2 (blood and LP: 0 vs scattered) co-expressions were found in blood and lamina propria of UC samples. HGFR/CD133 and CD133/CDX2 co-expressions appeared only in UC lamina propria samples. CDX2, Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.In active UC, a portion of circulating HGFR-expressing cells are committed to the epithelial lineage, and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.
    Document Type:
    Reference
    Product Catalog Number:
    AP132B
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, biotin-SP conjugate
  • Fed-batch production of glucose 6-phosphate dehydrogenase using recombinant Saccharomyces cerevisiae. 18478428

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L L-tryptophan, 0.02 g/L L-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30 degrees C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (L-tryptophan, L-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 micromol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.
    Document Type:
    Reference
    Product Catalog Number:
    07-720