Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

transient


1486 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (1,438)
  • (22)
  • (4)
Can't Find What You're Looking For?
Contact Customer Service

 
  • A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. 16507360

    X chromosome inactivation (XCI) depends on a noncoding sense-antisense transcript pair, Xist and Tsix. At the onset of XCI, Xist RNA accumulates on one of two Xs, coating and silencing the chromosome in cis. The molecular basis for monoallelic Xist upregulation is not known, though evidence predominantly supports a posttranscriptional mechanism through RNA stabilization. Here, we test whether Tsix RNA destabilizes Xist RNA. Unexpectedly, we find that Xist upregulation is not based on transcript stabilization at all but is instead controlled by transcription in a sex-specific manner. Tsix directly regulates its transcription. On the future inactive X, Tsix downregulation induces a transient heterochromatic state in Xist, followed paradoxically by high-level Xist expression. A Tsix-deficient X chromosome adopts the heterochromatic state in pre-XCI cells. This state persists through XCI establishment and "reverts" to a euchromatic state during XCI maintenance. We have therefore identified chromatin marks that preempt and predict asymmetric Xist expression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible ... 24935251

    The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.
    Document Type:
    Reference
    Product Catalog Number:
    17-614
    Product Catalog Name:
    ChIPAb+ Trimethyl-Histone H3 (Lys4) - ChIP Validated Antibody and Primer Set, rabbit monoclonal (ChIPAb+ Trimethyl-Histone H3 (Lys4) - ChIP Validated Antibody and Primer Set, rabbit monoclonal)
  • A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. 19478193

    It is presently unknown whether oxidative stress increases in disused skeletal muscle in humans. Markers of oxidative stress were investigated in biopsies from the vastus lateralis muscle, collected from healthy subjects before [time 0 (T0)], after 1 wk (T8), and after 5 wk (T35) of bed rest. An 18% decrease in fiber cross-sectional area was detected in T35 biopsies (P<0.05). Carbonylation of muscle proteins significantly increased about twofold at T35 (P<0.02) and correlated positively with the decrease in fiber cross-sectional area (P=0.04). Conversely, T8 biopsies showed a significant increase in protein levels of heme oxygenase-1 and glucose-regulated protein-75 (Grp75)/mitochondrial heat shock protein-70, two stress proteins involved in the antioxidant defense (P<0.05). Heme oxygenase-1 increase, which involved a larger proportion of slow fibers compared with T0, appeared blunted in T35 biopsies. Grp75 protein level increased threefold in T8 biopsies and localized especially in slow fibers (P<0.025), to decrease significantly in T35 biopsies (P<0.05). Percent change in Grp75 levels positively correlated with fiber cross-sectional area (P=0.01). Parallel investigations on rat soleus muscles, performed after 1-15 days of hindlimb suspension, showed that Grp75 protein levels significantly increased after 24 h of unloading (P = 0.02), i.e., before statistically significant evidence of muscle atrophy, to decrease thereafter in relation to the degree of muscle atrophy (P=0.03). Therefore, in humans as in rodents, disuse muscle atrophy is characterized by increased protein carbonylation and by the blunting of the antioxidant stress response evoked by disuse.
    Document Type:
    Reference
    Product Catalog Number:
    S7150
    Product Catalog Name:
    OxyBlot Protein Oxidation Detection Kit (OxyBlot Protein Oxidation Detection Kit)
  • A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. 20685999

    The generation of a precise number of neural cells and the determination of their laminar fate are tightly controlled processes during development of the cerebral cortex. Using genetic tracing in mice, we have identified a population of glutamatergic neurons generated by Dbx1-expressing progenitors at the pallial-subpallial boundary predominantly at embryonic day 12.5 (E12.5) and subsequent to Cajal-Retzius cells. We show that these neurons migrate tangentially to populate the cortical plate (CP) at all rostrocaudal and mediolateral levels by E14.5. At birth, they homogeneously populate cortical areas and represent less than 5% of cortical cells. However, they are distributed into neocortical layers according to their birthdates and express the corresponding markers of glutamatergic differentiation (Tbr1, ER81, Cux2, Ctip2). Notably, this population dies massively by apoptosis at the completion of corticogenesis and represents 50% of dying neurons in the postnatal day 0 cortex. Specific genetic ablation of these transient Dbx1-derived CP neurons leads to a 20% decrease in neocortical cell numbers in perinatal animals. Our results show that a previously unidentified transient population of glutamatergic neurons migrates from extraneocortical regions over long distance from their generation site and participates in neocortical radial growth in a non-cell-autonomous manner.
    Document Type:
    Reference
    Product Catalog Number:
    AB9610
    Product Catalog Name:
    Anti-Olig-2 Antibody (Anti-Olig-2 Antibody)
  • Transient Expression of Fez Family Zinc Finger 2 Protein Regulates the Brn3b Gene in Developing Retinal Ganglion Cells. 26861874

    Retinal ganglion cells (RGCs) are projection neurons in the neural retina that relay visual information from the environment to the central nervous system. The early expression of MATH5 endows the post-mitotic precursors with RGC competence and leads to the activation ofBrn3bthat marks committed RGCs. Nevertheless, this fate commitment process and, specifically, regulation ofBrn3bremain elusive. To explore the molecular mechanisms underlying RGC generation in the mouse retina, we analyzed the expression and function of Fez family zinc finger 2 (FEZF2), a transcription factor critical for the development of projection neurons in the cerebral cortex.Fezf2mRNA and protein were transiently expressed at embryonic day 16.5 in the inner neuroblast layer and the prospective ganglion cell layer of the retina, respectively. Knockout ofFezf2in the developing retina reduced BRN3B+ cells and increased apoptotic cell markers.Fezf2knockdown by retinalin uteroelectroporation diminished BRN3B but not the coexpressed ISLET1 and BRN3A, indicating that the BRN3B decrease was the cause, not the result, of the overall reduction of BRN3B+ RGCs in theFezf2knockout retina. Moreover, the mRNA and promoter activity ofBrn3bwere increasedin vitroby FEZF2, which bound to a 5' regulatory fragment in theBrn3bgenomic locus. These results indicate that transient expression ofFezf2in the retina modulates the transcription ofBrn3band the survival of RGCs. This study improves our understanding of the transcriptional cascade required for the specification of RGCs and provides novel insights into the molecular basis of retinal development.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™ (EZ-ChIP™)
  • A postsynaptic transient K(+) current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. 12114547

    Voltage-gated ion channels in the dendrites and somata of central neurons can modulate the impact of synaptic inputs. One of the ionic currents contributing to such modulation is the fast inactivating A-type potassium current (I(A)). We have investigated the role of I(A) in synaptic integration in rat CA1 pyramidal cells by using arachidonic acid (AA) and heteropodatoxin-3 (HpTX3), a selective blocker of the Kv4 channels underlying much of the somatodendritic I(A). AA and HpTX3 each reduced I(A) by 60-70% (measured at the soma) and strongly enhanced the amplitude and summation of excitatory postsynaptic responses, thus facilitating action potential discharges. HpTX3 also reduced the threshold for induction of long-term potentiation. We conclude that the postsynaptic I(A) is activated during synaptic depolarizations and effectively regulates the somatodendritic integration of high-frequency trains of synaptic input. AA, which can be released by such input, enhances synaptic efficacy by suppressing I(A), which could play an important role in frequency-dependent synaptic plasticity in the hippocampus.
    Document Type:
    Reference
    Product Catalog Number:
    07-491
  • Transient Overexpression of Gremlin Results in Epithelial Activation and Reversible Fibrosis in Rat Lungs. 20705941

    Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of the lung parenchyma, without curative treatment. Gremlin is a bone morphogenic protein (BMP) antagonist, its expression being increased in IPF lungs. It has been implicated in promoting myofibroblast accumulation, likely through inhibited fibroblast apoptosis and epithelial-to-mesenchymal transition (EMT). In the current study we examined the effects of selective adenovirus-mediated overexpression of Gremlin in rat lungs. We show that transient Gremlin overexpression results in activation of alveolar epithelial cells with proliferation and apoptosis, as well as partly reversible lung fibrosis. We found myofibroblasts arranged in fibroblastic foci, together with evidence for EMT. Fibroblast proliferation occurred delayed as compared to epithelial changes. Fibrotic pathology significantly declined after day 14, the reversal being associated with an increase of the epithelial protective element fibroblast growth factor 10 (FGF10). Our data indicate that Gremlin-mediated BMP inhibition results in activation of epithelial cells and transient fibrosis, but also induction of epithelium protective FGF10. A Gremlin-BMP-FGF10 loop may explain these results, and demonstrate that the interaction between different factors are quite complex in fibrotic lung disease. Increased Gremlin expression in human IPF tissue may be an expression of continuing epithelial injury, and Gremlin may be part of activated repair mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1049
    Product Catalog Name:
    Anti-Bone Morphogenetic Protein 4 Antibody, clone 3H2 (Anti-Bone Morphogenetic Protein 4 Antibody, clone 3H2)
  • Transient domoic acid excitotoxicity increases BDNF expression and activates both MEK- and PKA-dependent neurogenesis in organotypic hippocampal slices. 23865384

    We have previously reported evidence of cell proliferation and increased neurogenesis in rat organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area induced by low concentrations of the AMPA/kainate agonist domoic acid (DOM). An increased baseline rate of neurogenesis may contribute to recovery from DOM-induced mild injury but the intracellular mechanism(s) responsible for neuronal proliferation remain unclear. The current study investigated the key intracellular pathways responsible for DOM-induced neurogenesis in OHSC including the effects of transient excitotoxicity on the expression of brain-derived neurotrophic factor (BDNF), a well-known regulator of progenitor cell mitosis.Application of a low concentration of DOM (2 μM) for 24 h followed by recovery induced a significant and long lasting increase in BDNF protein levels expressed by both neurons and microglial cells. Furthermore, the mild DOM toxicity stimulated both PKA and MEK-dependent intracellular signaling cascades and induced a significant increase in BDNF- transcription factor CREB activation and BDNF-receptor TrkB expression. Coexposure to specific inhibitors of PKA and MEK phosphorylation resulted in a significant decrease in the neurogenic marker doublecortin.Our results suggest that transient excitotoxic insult induced by DOM produces BDNF and CREB overexpression via MEK and PKA pathways and that both pathways mediate, at least in part, the increased neural proliferation resulting from mild excitotoxicity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. 21068199

    Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™ (EZ-ChIP™)
  • Transient appearance of the epithelial invagination in the olfactory pit of chick embryos. 25231436

    In this study, immunohistochemical analysis has been performed using neuronal markers (GAP43, NCAM and PGP 9.5) to characterize the epithelial invagination in the medial wall of the olfactory pit in the chick embryos. At stages 26-27, the epithelial invagination was primarily composed of characteristic round-shaped cells, which were negative for neuronal markers. These cells were also found in the medial wall of the olfactory pit at stage 24, whereas the epithelial invagination was not observed at any stages other than stages 26-27. The possible relationship between the round-shaped cells and the migratory cells is discussed.
    Document Type:
    Reference
    Product Catalog Number:
    AB5032
    Product Catalog Name:
    Anti-Neural Cell Adhesion Molecule Antibody (Anti-Neural Cell Adhesion Molecule Antibody)