Skip to Content
Merck
  • Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes.

Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes.

Arthritis & rheumatology (Hoboken, N.J.) (2014-11-25)
Ralf B Schittenhelm, Terry C C Lim Kam Sian, Pascal G Wilmann, Nadine L Dudek, Anthony W Purcell
ABSTRACT

The association of HLA-B27 with spondyloarthropathy is one of the strongest documented for any autoimmune disease. A common hypothesis for this association is the arthritogenic peptide concept. This dictates that differences in the peptide binding preferences of disease-associated and non-disease-associated HLA-B27 allotypes underlie the presentation of bacterial and self-peptides, leading to cross-reactive T cell immunity and subsequent autoimmune attack of affected tissues. The aim of this study was to analyze and compare self-peptides from 8 HLA-B27 allotypes, to increase existing data sets of HLA-B27 ligands, to refine and compare their consensus-binding motifs, and to reveal similarities and differences in the peptide repertoire of the HLA-B27 subtypes. Qualitative differences in the peptides bound to the 8 most frequent HLA-B27 subtypes were determined by tandem mass spectrometry, and quantitative changes in allelic binding specificities were determined by highly sensitive and targeted multiple reaction monitoring mass spectrometry. We identified >7,500 major histocompatibility complex class I peptides derived from the 8 most common HLA-B27 allotypes (HLA-B*27:02 to HLA-B*27:09). We describe individual binding motifs for these alleles for the 9-12-mer ligands. The peptide repertoires of these closely related alleles showed significant overlap. Allelic polymorphisms resulting in changes in the amino acid composition of the antigen-binding cleft manifested largely as quantitative changes in the peptide cargo of these molecules. Absolute binding preferences of HLA-B27 allotypes do not explain disease association. The arthritogenic peptide theory needs to be reassessed in terms of quantitative changes in self-peptide presentation, T cell selection, and altered conformation of bound peptides.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, ≥99.8% (GC)
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)