Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Huntington's disease (HD) is one of nine neurodegenerative diseases caused by an expanded polyglutamine (polyQ) tract within the disease protein. To characterize pathways induced early in HD, we have developed stable inducible PC12 cell lines expressing wild-type or mutant forms of huntingtin exon 1 fragments or the full-length huntingtin protein. Three cAMP response element-binding protein (CREB)-binding protein-dependent transcriptional pathways, regulated by cAMP response element (CRE), retinoic acid response element, and nuclear factor kappaB, show abnormalities in our exon 1 cell model. Of these, the CRE pathway shows the earliest disruption and is significantly down-regulated as early as 12 h following mutant htt transgene induction. This pathway is also the only one of the three that is similarly perturbed in our full-length HD model, where it is also down-regulated at an early time point, compatible with observations in HD brains. Reduced CRE-dependent transcription may contribute to polyQ disease pathogenesis because overexpression of transcriptionally active CREB, but not an inactive form of the protein, is able to protect against polyQ-induced cell death and reduce aggregation.
Document Type:
Reference
Product Catalog Number:
MAB2166
Product Catalog Name:
Anti-Huntingtin Protein Antibody, a.a. 181-810, clone 1HU-4C8
Prostate smooth muscle tone is regulated by α1-adrenoceptor-induced contraction and cAMP-mediated relaxation. EPAC is an effector of cAMP, being involved in smooth muscle relaxation and cell cycle control outside the lower urinary tract. Here, we investigated the expression and function of EPAC in human prostate tissues from patients undergoing radical prostatectomy.mRNA and protein expression of EPAC was detected in all prostate tissues by RT-PCR and Western blot analysis. Immunoreactivity was observed in stromal cells, and colocalized with immunofluorescence for α-smooth muscle actin and calponin. Under normal conditions, noradrenaline- or phenylephrine-induced contraction of prostate strips in the organ bath was not affected by the EPAC activator pCPT (SP-8-pCPT-2'-O-Me-cAMPS.NA) (30 μM). However, when the cyclooxygenase inhibitor indomethacin (50 μM) was added, EPAC activators pCPT and OME (8-CPT-2'-O-Me-cAMP.Na) (30 μM) significantly reduced contractions by low concentrations of phenylephrine. These effects were not observed on noradrenaline-induced contraction. OME and pCPT caused phosphorylation of the transcription factor Elk1 in prostate tissues. Elk1 activation was confirmed by EMSA (electrophoretic mobility shift assay), where OME and pCPT incresed Elk1 binding to a specific DNA probe.EPAC activation may reduce α1-adrenergic prostate contraction in the human prostate, although this effect is masked by cyclooxygenases and β-adrenoceptors. A main EPAC function in the human prostate may be the regulation of the transcription factor Elk1.
In cells of the innate immune system, pathological increases in intracellular cAMP attenuate immune responses and contribute to infections by bacteria such as Bacillus anthracis. In this work, cAMP from B. anthracis edema toxin (ET) is found to activate the Notch signaling pathway in both mouse macrophages and human monocytes. ET as well as a cell-permeable activator of PKA induce Notch target genes (HES1, HEY1, IL2RA, and IL7R) and are able to significantly enhance the induction of these Notch target genes by a Toll-like receptor ligand. Elevated cAMP also resulted in increased levels of Groucho/transducin-like enhancer of Split (TLE) and led to increased amounts of a transcriptional repressor complex consisting of TLE and the Notch target Hes1. To address the mechanism used by ET to activate Notch signaling, components of Notch signaling were examined, and results revealed that ET increased levels of recombinant recognition sequence binding protein at the Jκ site (RBP-J), a DNA binding protein and principal transcriptional regulator of Notch signaling. Overexpression studies indicated that RBP-J was sufficient to activate Notch signaling and potentiate LPS-induced Notch signaling. Further examination of the mechanism used by ET to activate Notch signaling revealed that C/EBP β, a transcription factor activated by cAMP, helped activate Notch signaling and up-regulated RBP-J. These studies demonstrate that cAMP activates Notch signaling and increases the expression of TLE, which could be an important mechanism utilized by cAMP to suppress immune responses.
Neurite polarity is a morphological characteristic of dentate gyrus granule cells, which extend axons to the hilar region and dendrites in the opposite direction, i.e. to the molecular layer. This remarkable polarity must require a differential system for axon and dendrite guidance. Here, we report that the axon and dendrites of a granule cell are differentially responsive to cAMP. In developing cultures of dispersed granule cells, dendritic growth cones were increased in number after pharmacological activation of cAMP signaling and decreased after blockade of cAMP signaling. Activation of cAMP signaling antagonized dendritic collapse induced by the potent repellents Sema3F and glutamate. In contrast to dendrites, axons were protected from Sema3F-induced collapse when cAMP signaling was inhibited. Axonal and dendritic growth cones both expressed type 1 adenylyl cyclase, but only axons showed a cAMP increase in response to Sema3F, and the elevated cAMP was sufficient to collapse axonal growth cones. Thus, the axons and dendrites of dentate granule cells differ in the regulation of cAMP levels as well as responsiveness to cAMP. cAMP may be crucial for shaping the information flow polarity in the dentate gyrus circuit.
Bone sialoprotein (BSP) is a noncollagenous protein of the extracellular matrix in mineralized connective tissues that has been implicated in the nucleation of hydroxyapatite. Forskolin (FSK), an activator of adenylate cyclase, increased the intracellular cAMP level, which stimulates the proliferation and differentiation of osteoblasts. Fibroblast growth factor 2 (FGF2) is a potent mitogen in many cell types, including osteoblasts. In human prostate cancer DU145 cells, FSK (1μM) and FGF2 (10ng/ml) increased BSP and Runx2 mRNA and protein levels at 3 and 12h, respectively. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of DU145 cells with FSK (1μM) and FGF2 (10ng/ml) increased the luciferase activities of constructs between -60LUC to -927LUC and -108LUC to -927LUC, including the human BSP gene promoter. Effects of FSK and FGF2 abrogated in constructs included 2bp mutations in the two cAMP response elements (CRE1 and CRE2). Luciferase activities induced by FSK and FGF2 were blocked by protein kinase A and tyrosine kinase inhibitors. Gel mobility shift analyses showed that FSK and FGF2 increased the binding of CRE1 and CRE2. CRE1-protein complexes were supershifted by phospho-CREB1 and c-Fos antibodies, and disrupted by CREB1, c-Jun, JunD, Fra2, p300, Runx2, Dlx5 and Smad1 antibodies. CRE2-protein complexes were disrupted by CREB1, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, p300, Runx2, Dlx5 and Smad1 antibodies. These studies demonstrate that FSK and FGF2 stimulate BSP transcription in DU145 human prostate cancer cells by targeting the CRE1 and CRE2 elements in the human BSP gene promoter.