Millipore Sigma Vibrant Logo
 

galanin+receptor


16 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (16)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (14)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. 20506472

    The development of the hypothalamic paraventricular nucleus (PVN) involves several factors that work together to establish a cell group that regulates neuroendocrine functions and behaviors. Several molecular markers were noted within the developing PVN, including estrogen receptors (ER), neuronal nitric oxide synthase (nNOS), and brain-derived neurotrophic factor (BDNF). By contrast, immunoreactive gamma-aminobutyric acid (GABA) was found in cells and fibers surrounding the PVN. Two animal models were used to test the hypothesis that GABA works through GABA(A) and GABA(B) receptors to influence the development of the PVN. Treatment with bicuculline to decrease GABA(A) receptor signaling from embryonic day (E) 10 to E17 resulted in fewer cells containing immunoreactive (ir) ERalpha in the region of the PVN vs. control. GABA(B)R1 receptor subunit knockout mice were used to examine the PVN at P0 without GABA(B) signaling. In female but not male GABA(B)R1 subunit knockout mice, the positions of cells containing ir ERalpha shifted from medial to lateral compared with wild-type controls, whereas the total number of ir ERalpha-containing cells was unchanged. In E17 knockout mice, ir nNOS cells and fibers were spread over a greater area. There was also a significant decrease in ir BDNF in the knockout mice in a region-dependent manner. Changes in cell position and protein expression subsequent to disruption of GABA signaling may be due, in part, to changes in nNOS and BDNF signaling. Based on the current study, the PVN can be added as another site where GABA exerts morphogenetic actions in development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-935
    Nombre del producto:
    Anti-Estrogen Receptor α Antibody
  • Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. 16998907

    The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB351R
    Nombre del producto:
    Anti-Glutamate Decarboxylase Antibody, 65 kDa isoform, clone GAD-6
  • Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. 25917569

    Perineural invasion (PNI) is an indicator of poor survival in multiple cancers. Unfortunately, there is no targeted treatment for PNI since the molecular mechanisms are largely unknown. PNI is an active process, suggesting that cancer cells communicate with nerves. However, nerve-tumour crosstalk is understudied due to the lack of in vivo models to investigate the mechanisms. Here we developed an in vivo model of PNI to characterize this interaction. We show that the neuropeptide galanin (GAL) initiates nerve-tumour crosstalk via activation of its G protein-coupled receptor, GALR2. Our data reveal a novel mechanism by which GAL from nerves stimulates GALR2 on cancer cells to induce NFATC2-mediated transcription of cyclooxygenase-2 and GAL. Prostaglandin E2 promotes cancer invasion, and in a feedback mechanism, GAL released by cancer induces neuritogenesis, facilitating PNI. This study describes a novel in vivo model for PNI and reveals the dynamic interaction between nerve and cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. 15350653

    The neuropeptide galanin exhibits anticonvulsant effects in experimental epilepsy. Two galanin receptor subtypes, GalR1 and GalR2, are present in the brain. We examined the role of GalR1 in seizures by studying the susceptibility of GalR1 knockout (KO) mice to status epilepticus (SE) and accompanying neuronal injury. SE was induced in GalR1 KO and wild type (WT) mice by Li-pilocarpine, 60 min electrical perforant path stimulation (PPS), or systemic kainic acid (KA). Seizures were analyzed using Harmonie software. Cell injury was examined by FluoroJade B- and terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick end labeling; neurogenesis was studied using bromodeoxyuridine labeling. Compared with WT littermates, GalR1 KO showed more severe seizures, more profound injury to the CA1 pyramidal cell layer, as well as injury to hilar interneurons and dentate granule cells upon Li-pilocarpine administration. PPS led to more severe seizures in KO, as compared with WT mice. No difference in the extent of neuronal degeneration was observed between the mice of two genotypes in CA1 pyramidal cell layer; however, in contrast to WT, GalR1 KO developed mild injury to hilar interneurons on the side of PPS. KA-induced seizures did not differ between GalR1 KO and WT animals, and led to no injury to the hippocampus in either of experimental group. No differences were found between KO and WT mice in both basal and seizure-induced neuronal progenitor proliferation in all seizure types. Li-pilocarpine led to more extensive glia proliferation in GalR1 KO than in WT, and in both mouse types in two other SE models. In conclusion, GalR1 mediate galanin protection from seizures and seizure-induced hippocampal injury in Li-pilocarpine and PPS models of limbic SE, but not under conditions of KA-induced seizures. The results justify the development and use of GalR1 agonists in the treatment of certain forms of epilepsy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. 16243364

    Galanin is a widely-distributed neuropeptide that acts as an endogenous anticonvulsant. We have recently generated a galanin receptor type 1 knockout mouse (Galr1(-/-)) that develops spontaneous seizures. Our aim here was to characterize the seizures by making electroencephalogram (EEG) recordings from this animal, and also to elucidate the cellular basis of its epileptic phenotype by studying the neurophysiology of CA1 pyramidal neurons in acute hippocampal slices. EEGs showed that major seizures had a partial onset with secondary generalization, and that paroxysms of spike-and-slow waves occurred and were associated with hypoactivity. The interictal EEG was also abnormal, with a marked excess of spike-and-slow waves. Slice experiments showed that resting potential, input resistance, intrinsic excitability, paired-pulse facilitation of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs), stimulus--response plots for EPSCs, and several properties of spontaneous miniature EPSCs and IPSCs were all unchanged in the mutant mouse compared with wildtype. However, the frequency of miniature IPSCs was significantly reduced in the mutants. These results suggest that impaired synaptic inhibition in the hippocampus may contribute to the local onset of seizures in the Galr1(-/-) mouse.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Galanin receptor subtypes. 10689365

    The neuropeptide galanin, which is widely expressed in brain and peripheral tissues, exerts a broad range of physiological effects. Pharmacological studies using peptide analogues have led to speculation about multiple galanin receptor subtypes. Since 1994, a total of three G-protein-coupled receptor (GPCR) subtypes for galanin have been cloned (GAL1, gal2 and gal3). Potent, selective antagonists are yet to be found for any of the cloned receptors. Major challenges in this field include linking the receptor clones with each of the known physiological actions of galanin and evaluating the evidence for additional galanin receptor subtypes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. 9634573

    The neuropeptide galanin is overexpressed in the basal forebrain in Alzheimer's disease (AD). In rats, galanin inhibits evoked hippocampal acetylcholine release and impairs performance on several memory tasks, including delayed nonmatching to position (DNMTP). Galanin(1-13)-Pro2-(Ala-Leu)2-Ala-NH2 (M40), a peptidergic galanin receptor ligand, has been shown to block galanin-induced impairment on DNMTP in rats. M40 injected alone, however, does not improve DNMTP choice accuracy deficits in rats with selective cholinergic immunotoxic lesions of the basal forebrain. The present experiments used a strategy of combining M40 with an M1 cholinergic agonist in rats lesioned with the cholinergic immunotoxin 192IgG-saporin. Coadministration of intraventricular M40 with intraperitoneal 3-(3-S-n-pentyl-1,2,5-thiadiazol-4-yl)-1,2,5, 6-tetrahydro-1-methylpyridine (TZTP), an M1 agonist, improved choice accuracy significantly more than a threshold dose of TZTP alone. These results suggest that a galanin antagonist may enhance the efficacy of cholinergic treatments for the cognitive deficits of AD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. 21935944

    The retrotrapezoid nucleus (RTN) contains CO(2) -responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. The axonal projections of RTN-Phox2b neurons were traced by using biotinylated dextran amine (BDA), and many BDA-ir boutons were found to contain galanin immunoreactivity. RTN galaninergic neurons had ipsilateral projections that were identical with those of this nucleus at large: the ventral respiratory column, the caudolateral nucleus of the solitary tract, and the pontine Kölliker-Fuse, intertrigeminal region, and lateral parabrachial nucleus. For ultrastructural studies, RTN-Phox2b neurons (galaninergic and others) were transfected with a lentiviral vector that expresses mCherry almost exclusively in Phox2b-ir neurons. After spinal cord injections of a catecholamine neuron-selective toxin, there was a depletion of C1 neurons in the RTN area; thus it was determined that the mCherry-positive terminals located in the pre-Bötzinger complex originated almost exclusively from the RTN-Phox2b (non-C1) neurons. These terminals were generally VGLUT2-immunoreactive and formed numerous close appositions with neurokinin-1 receptor-ir pre-Bötzinger complex neurons. Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre-Bötzinger complex neurons presumed to generate the respiratory rhythm.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB2251