Inline concentration of mAb feed to increase the productivity of a continuous multi-column chromatography capture step

Thomas Elch & Herb Luzh, Merck, Burlington, MA
Corresponding author: thomas.elich@emdmillipore.com

Introduction

In continuous bioprocessing, a perfusion bioreactor may be linked directly to a chromatography capture step. This connection requires the capture step processing rate to conform with the perfusion harvest rate. While a rapid bioreactor harvest rate maximizes production, it also reduces the chromatography step residence time and resin utilization (Figure 1). Multi-column chromatography systems overcome this challenge by loading 2-6 equally sized columns in series to maximize resin utilization at short residence times (Figure 2A). However, a key drawback to this approach is that system complexity increases and resin productivity decreases with each additional column in rotation.

In this work, single-pass tangential flow filtration (SPTFF) is utilized for inline product concentration prior to a multi-column capture step. The volumetric flow rate reduction provided by SPTFF enables long column residence times without affecting product mass flowrate, thus reducing the number of serial columns for a simpler and more productive process (as illustrated by Figure 2B).

Case Study: Intensified multi-column capture with Eshmuno® A resin

Feed material: mAb23 permutate was pre-purified by Eshmuno® A chromatography resin to evaluate intensified multi-column capture feasibility. The Eshmuno® A resin eluate was diluted to either 1 g/L or 3 g/L to evaluate the effect of protein concentration on multi-column capture operation at constant mass flow rate.

Equipment: A NovaSep BioSC® system was used to define the column cycling strategy and execute multi-column tests.

Purification criteria: Target resin utilization was 80%. Non-load steps (wash, elute, strip, CIP) required 38 minutes.

Process Modeling Data

BioSC® Predict software was used to model the impact of SPTFF feed concentration on multi-column capture step productivity and column requirements (Figure 5). Fixed parameters were perfusion bioreactor volume (10 L) and column diameter (1.5 cm). Variable parameters were bioreactor feed rate, SPTFF concentration factor, perfusion rate, and column length. The model shows that SPTFF concentration improved productivity for all cases.

Summary

Multi-column bind & elute chromatography can be intensified by including inline SPTFF concentration upstream of the capture step. Case study data show that the intensified approach reduced the number of columns required for cycling, resulting in the following benefits:

➢ Less resin to process the same mass of mAb in the same time: 33% reduction in resin capital cost contributes to a 62% increase in resin productivity.

➢ Reduce system complexity: Fewer columns require less valves for a simpler multi-column capture step.

➢ Shrink equipment requirements: 35% reduction in system pressure and 66% reduction in load volumetric flowrate allow more to be done with smaller system pumps.

References:

1. McCracken, A. "Chapter 10: Multilibrary perfusate chromatography," Continuous Bioprocessing and Methodologies (Kovacs, Mark et al., 2010).