
# THE RESEARCHER'S GUIDE TO CRISPR SCREENING



ARRAYED

### STEP 1



#### Determine Cell Line

Identify which cell lines will work for your requirements.

- 1. Ensure the cell line is a good model in terms of relevance, biological process & genotype
- 2. Do you need a primary, transformed or stem cell platform?
- 3. Determine if the cell line can be adapted to your workflow
- **4.** Consider the doubling time and ploidy of the cell line

#### SigmaAldrich.com/ Screening

#### The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.



#### Design/Choose a gRNA Library and Screening Strategy

**CRISPR** libraries typically contain thousands of plasmids and multiple gRNAs per target gene. First you need to select an appropriate library.

- **1.** Are you interested in the whole genome or a more focused pathway?
- 2. Lentivirus or ribonucleoprotein?
- 3. Pooled or arrayed?
- Pooled: maximize the number of aRNA per gene target
- Arrayed: optimize the gRNA design
- 4. Controls: use nontaraeting guides and consider controls for enrichment and depletion depending on your screening approach
- 5. Use optimal designs for gRNA and—if designing your own librariesspread them to avoid clusters in inaccessible genomic regions



#### Determine **Optimal Conditions**

Low transduction efficiency can result in insufficient representation of the modified cell population.

- 1. Perform a kill curve to determine the concentration of selection antibiotic needed to kill the untransfected or untransduced cells
- 2. Determine the functional titer in your intended cell line using
- A colony forming unit assay based on antibiotic resistance, or
- A vector containing a fluorescence marker like GFP
- 3. Use a control vector to optimize the multiplicity of infection (MOI). Use the lowest MOI that offers one gRNA per cell



#### **Evaluate Your Cas9** Source

Establish a Cas9-expressing cell line or provide in an "all-in-one" vector.

- 1. Cas9 expressing cell lines: perform clonal isolation or use the mixed population of Cas9 expressing cells for screening.
- 2. All-in-one vectors: deliver both the Cas9 effector and aRNA by introducing one construct
- 3. Considerations for the optimal Cas9 source:
- Ensures constant expression levels in a uniform genetic background
- Eliminates concerns about co-transduction of gRNAs
- Supports high-throughput saRNA applications

### STEP 5



## Pooled and arrayed screens have similar

workflows with some differences: STEP POOLED

1000s aRNAs Library Preparation 1 gRNA per well per tube Multiple feasible Library Delivery Lentivirus required formats

| Screen Duration   | Efficient whole genome screening                                                                            | Time to screen<br>increases with the<br>number of clones                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Screen Capability | <i>in vivo</i> screening<br>possible                                                                        | <i>in vivo</i> screening<br>not possible                                                      |
| Analysis          | Deep sequencing/<br>deconvolution<br>required to analyze<br>data/identify hits                              | NGS is not required to understand results                                                     |
| Readout           | Limited options<br>(e.g. cell death or<br>proliferation) but<br>can be coupled with<br>single cell analysis | Multiple options<br>e.g. fluorescence,<br>luminescence, high<br>content, live cell<br>imaging |

