


10394 Pacific Center Court San Diego, CA 92121 (858) 450-9600

ACTIVATORS AND INHIBITORS OF ADENYLATE CYCLASE

Transmembrane receptors of various hormones are coupled to adenylate cyclase (AC) via heterotrimeric G-proteins. Ligand binding to the receptor changes the receptor conformation, allowing it to associate with a G-protein. This results in the activation of the specific G-protein via exchange of GTP for GDP bound to the α -subunit of the G-protein. The activated G-protein in turn activates AC resulting in the conversion of ATP to cAMP. cAMP then acts to regulate a wide variety of cellular processes. AC can couple with both the stimulatory and the inhibitory G-proteins (G_e and G_i, respectively). Interaction with G_e stimulates its activity and interaction with G_i inhibits its enzymatic activity.

AC is composed of two cytoplasmic domains, and two membrane-spanning domains, each of which contains six transmembrane spans. The amino acid sequence of each cytoplasmic domain, which is thought to contain a nucleotide (ATP) binding site, is well-conserved among the various subtypes. Although ACs can exist in both particulate and soluble forms, the particulate form is more prevalent in mammals.

Based on the conservation of their catalytic domains three classes of ACs have been cloned and are described as class I-AC from Enterobacteria; class II-'toxic'' ACs, including calmodulin (CaM)-activated enzymes from *Bordetella pertussis* and *Bacillus anthracis*; and class III-AC homologues from bacteria to human that include nine isoforms found in mammals, designated AC-1 to AC-9. These nine isoforms are stimulated by the α -subunit of G_s-protein and by forskolin. ACs are also capable of receiving signals from a variety of other sources, such as G_i- α , protein kinase A, protein kinase C, CaM kinase, and Ca²⁺/CaM. Hormonal activation of CaM-dependent adenylate cyclase occurs at very low Ca²⁺ levels. The activity of AC is inhibited by high levels of Ca²⁺, which also activate CaM-dependent phosphodiesterase.

Toxins that modulate adenylate cyclase activity via ADP-ribosylation of G-proteins

The α subunit of some G-proteins contains sites for modification by cholera toxin or pertussis toxin. Using NAD as the donor, these toxins catalyze the covalent incorporation of ADP-ribose into the G-protein α -subunit. Pertussis toxin catalyzes the ADP-ribosylation of G_i at a site that impairs the ability of the heterotrimeric G-proteins to interact with receptors. Cholera toxin ADP-ribosylates G_s in a manner that stabilizes the GTP-bound form resulting in persistent activation. CALBIOCHEM[®] is pleased to offer both holotoxins and purified toxin subunits.

Ref.: Nowak, J.Z., and Zawilska, J.B. 1999. Postepy. Hig. Med. Dosw. 53,147; Sunahara, R.K., et al. 1996. Annu. Rev. Pharmacol. Toxicol. 36, 461; MacNeil, S., et al. 1985. Cell Calcium 6, 213; Stiles, G.L. 1989. J. Cardiovasc. Pharmacol. 14 (Suppl 5), S1.

Product	Cat. No.	M.W.	Comments
Cholera Toxin, <i>Vibrio cholerae,</i> Type Inaba 569B	227035	84,000	ADP-ribosylates G _s causing persistent activation of adeny- late cyclase.
Cholera Toxin, <i>Vibrio cholerae,</i> Type Inaba 569B, Azide Free	227036	84,000	Formulated without azide for use in tissue culture.
Cholera Toxin A Subunit	227037	28,000	Portion of the holotoxin responsible for activating adenylate cyclase via ADP-ribosylation of G _s .
Cholera Toxin B Subunit	227039	55,000	Portion of cholera toxin responsible for binding to the GM ₁ ganglioside receptor on the cell surface.
Cholera Toxin B Subunit, Peroxidase Conjugate	227041	—	Suitable for the demonstration of dendritic branching in retrogradely labeled neurons.
Pertussis Toxin, Bordetella pertussis	516560	105,000	Catalyzes the ADP-ribosylation of G_i , uncoupling G_i from receptors.
Pertussis Toxin A Protomer	516854	28,000	Enzymatic component of the holotoxin which contains both the NAD-glycohydrolase and the ADP-ribosyltrans-ferase activities.
Pertussis Toxin B Oligomer	516852	4 subunits	Portion of holotoxin responsible for binding to cell surfaces and facilitating the entry of the A protomer.

Ligands Which Modulate Adenylate Cyclase Activity via G-protein Coupled Receptors

Product	Cat. No.	Effect on Adenylate Cyclase	Receptor	Ref.
Adenosine	1160	Inhibitor/ Activator	A ₁ /A ₂	1
Adenosine, N ⁶ -Cyclohexyl-	116830	Inhibitor	Adenosine A ₁	2
Angiotensin II	05-23-0101	Inhibitor	Angiotensin II	3
Carbacyclin	212402	Activator	PGI ₂	4,5
Dopamine	4000	Activator/ Inhibitor	D ₁ /D ₂	6
Endothelin 1	05-23-3800	Activator/ Inhibitor	ET _A / ET _B	7
L-Epinephrine	3249	Activator/ Inhibitor	β ₁ , β ₂ / α ₂	8
L-(–)-Epinephrine-(+)-bitartrate	324900	Activator/ Inhibitor	β ₁ , β ₂ / α ₂	8
Glucagon	05-23-2700	Activator	Glucagon	9
Isoproterenol, HCI	420355	Activator	β Adrenergic	8
(±)-Octopamine, HCI	494420	Activator	Octopamine ₂	10
PACAP 27 Amide	05-23-2151	Activator	PACAP I and II	11,12
PACAP 38	05-23-2150	Activator	PACAP I and II	12,13
Parathyroid Hormone 1-34	Several	Activator	PTH	14
Prostaglandin D ₂	538909	Activator	PGD ₂	15
Prostaglandin E ₁	538903	Activator	PGE ₁	16
Prostaglandin E ₂	538904	Activator/ Inhibitor	EP ₂ /EP ₃	15,17
Prostaglandin I ₂	538925	Activator	PGI ₂	18
[Arg ⁸]-Vasopressin	05-23-0150	Activator	Vasopressin	19
[Lys ⁸]-Vasopressin	05-23-0153	Activator	Vasopressin	19

References:

- 1. Ramkumar, V., et al. 1991. Mol. Pharmacol. 40, 639.
- 2. Ishikawa, A., et al. 1994. Neuroscience Lett. 171, 129.
- 3. Baukal, A.J., et al. 1994. *J. Biol. Chem.* **269**, 24546.
- 4. Sawai, T., et al. 1993. J. Biol. Chem. 268, 1995.
- 5. Ito, Y., et al. 1994. *Atherosclerosis* **110**, 69.
- 6. Schoffelmeer, A.N., et al. 1994. *Synapse* **17**, 190.
- 7. Eguchi, S., et al. 1993. *Endocrinology* **132**, 524.
- 8. Cremaschi, G.A., et al. 1994. Int. J. Immunopharmacol. 16, 1043.
- 9. Savage, A., et al. 1995. Biochem. J. 307, 281.

10. Evans, P.D., and Robb, S. 1993. Neurochem. Res. 18, 869.

Miyata, A., et al. 1989. *Biochem. Biophys. Res. Comm.* 164, 567.
 Margiotta, J.F., and Pardi, D. 1995. *Mol. Pharmacol.* 48, 63.
 Miyata, A., et al. 1990. *Biochem. Biophys. Res. Comm.* 170, 643.
 Hanson, A.S., and Linas, S.L. 1994. *Hypertension* 23, 468.
 Armstrong, R.A., and Talapin, E. 1994. *Prostaglandins* 48, 221.
 Ammer, H., and Schulz, R. 1993. *Mol. Pharmacol.* 43, 556.
 Harazono, A., et al. 1994. *Biochem. Biophys. Res. Comm.* 201, 340.
 Hassid, A. 1986. *J. Pharmacol. Exp. Ther.* 239, 334.
 Gorbulev, V., et al. 1993. *Eur. J. Biochem.* 215, 1.

Our Product Guides Make it Easy to Find What Your Research Needs!

Ask for your free copy today!

Second Messengers: Tools For Signal Transduction Research

G-Proteins and Related Products

Forskolin and Forskolin Analogs - Unique Activators of Adenylate Cyclase

Forskolin, a diterpene, is a potent activator of adenylate cyclase that has been used extensively to increase intracellular cAMP levels and to elicit cAMP-dependent physiological responses. This activation is believed to occur via its interaction with the catalytic subunit of adenylate cyclase. Although low levels of forskolin directly elicit small increases in cAMP levels, they greatly potentiate hormonal activation of adeny-late cyclase in a number of intact cells. Forskolin, thus, is an invaluable tool for studying the role of cAMP in physiological responses to hormones. More recently, forskolin has also been shown to inhibit a number of membrane transport proteins and channel proteins through a mechanism that does not involve the production of cAMP. Forskolin does not affect the activity of guanylate cyclase or cyclic nucleotide phosphodiesterases.

Product	Cat. No.	Structure	Comments	Ref.
Forskolin	344270	$\begin{array}{c} O \\ O $	Rapid and reversible activator of adenylate cyclase. $EC_{50} = 5 - 10 \mu M$ in rat cerebral cortical membranes.	1
Forskolin, 6-Acetyl-7-deacetyl-	344271	OH CH ₃ CH ₃ CH ₂ OH CH ₃ OH H ₃ C CH ₃ OAc	Less potent derivative of parent compound. EC ₅₀ = 40 μ M in rat cerebral cortical membranes.	2
Forskolin, 7-Deacetyl-	344274	$\begin{array}{c} O \\ O \\ O \\ H \\ CH_3 \\ OH \\ OH \\ H_3C \\ CH_3 \\ OH \\ O$	Less potent derivative of parent compound. $EC_{50} = 20 \ \mu M$ in rat cerebral cortical membranes.	2
Forskolin, 7-Deacetyl-6- (N-acetylglycyl)-	344272	$\begin{array}{c} OH \\ OH \\ CH_3 \\ OH \\ OH \\ H_3C \\ CH_3 \\ OCOCH_2NHCOCH_3 \end{array} CH_2$	Chemically modified forskolin with greater stability and water solubility. Exhibits about 80% of the stimulatory activity of its parent compound. Reported to reduce cAMP-sensitive K ⁺ current.	3
Forskolin, 7-Deacetyl-7-O- hemisuccinyl⁻	344275	$H_{3C} CH_{3} CH_{2}$ $H_{3C} CH_{3} CH_{2}$ $H_{3C} CH_{2} CH_{2}$ $H_{3C} CH_{2} CH_{2}$ $H_{3C} CH_{2} CH_{2}$ $H_{3C} CH_{2} CH_{2}$ $H_{3C} CH_{2} CH_{2}$ $H_{3C} CH_{2} CH_{2}$	Can be readily activated and used for preparation of probes and affinity supports. Free carboxyl group can be readily coupled to aminoethyl-agarose via its N-hydroxy- succinimide ester. The immobilized derivative can be used to purify adenylate cyclase.	4
Forskolin, 7-Deacetyl-7-(O-N- methylpiperazino)-γ-butryl- Dihydrochlonde	344273 н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ H \\ OH \\ 0 \\ CH_3 \\ H \\ 0 \\ CH_3 \\ OH \end{array} \\ \begin{array}{c} CH_2 \\ CH_2 \\ OH \\ OCO(CH_2)_3 \\ OH \\ OH \\ OCO(CH_2)_3 \\ OH \\ O$	Water-soluble (20 μ M) forskolin derivative which activates adenylate cyclase in rat brain membrane preparations (EC ₅₀ = 13 μ M).	5
Forskolin, 1,9-Dideoxy-	344277	$CH_3 CH_2$ $CH_3 CH_2$ $H_3 CH_3 OH$	Naturally-occurring analog of forskolin which does not stimulate adenylate cyclase (EC ₅₀ >1 mM). For use as a negative control.	6

References:

- 1. Seamon, K.B., et al. 1981. Proc. Natl. Acad. Sci. USA 78, 3363.
- 2. Seamon, K.B., et al. 1983. J. Med. Chem. 26, 436.
- 3. Baxter, D.A., and Byrne, J.H. 1990. J. Neurophysiol. 64, 1474.

4. Pfeuffer, T., and Metzger, H. 1982. FEBS Lett. 146, 369.

- 5. Laurenza, A., et al. 1987. Mol. Pharmacol. 32, 133.
- 6. Seamon, K.B., et al. 1984. Proc. Natl. Acad. Sci. USA 81, 5081.

Products which Inhibit Adenylate Cyclase by Non-Receptor-Dependent Mechanisms

Product	Cat. No.	Structure	Comments	Ref.
2',5'-Dideoxyadenosine	288104		A cell-permeable adenosine analog that binds to the "P-site" adenosine receptor located on the catalytic subunit of adenylate cyclase. Blocks parathyroid hormone-induced cAMP production ($IC_{50} = 100 \mu M$).	1,2
MDL-12,330A, Hydrochloride	444200		Cell-permeable. Irreversibly inhibits adenylate cyclase in rat liver membranes (IC ₅₀ = 250 μM).	3
SQ 22536	568500		Cell-permeable. Blocks parathyroid hormone-induced cAMP production (IC ₅₀ = 200 μ M).	1

1. Reid, I.R., et al. 1990. Amer. J. Physiol. 258, E708.

2. Williams, M. 1987. Annu. Rev. Pharmacol. Toxicol. 27, 315.

3. Guellaen, G., et al. 1977. Biochim. Biophys. Acta 484, 465.

Inhibitors of cAMP Phosphodiesterases (PDE IV).

The hydrolysis of cAMP and cGMP is catalyzed by many cyclic nucleotide phosphodiesterases (PDE). These enzymes are classified based on their substrate specificity and on how they are regulated by calmodulin and cGMP. PDE inhibitors are often used in combination with adenylate cyclase activators to produce greater cAMP levels than may be achieved by using either class of reagents alone.

Product	Cat. No.	Target PDE family	Comments
Denbufylline	253500	Selective	A xanthine derivative that acts as a selective inhibitor of cAMP-specific phosphodiesterase (K _i \sim 1 μ M).
Etazolate, HCl (SQ20009)	331500	Selective	A selective cAMP-specific phosphodiesterase inhibitor ($IC_{50} = 2 \mu M$).
IBMX (3-Isobutyl- 1-methylxanthine)	410957	Non-selective	A non-specific inhibitor of cAMP and cGMP phospho- diesterases (IC ₅₀ = 2 - 50 μ M). Also acts as an adenosine receptor antagonist.
Ro-20-1724	557502	Selective	Selective inhibitor of cAMP-specific phosphodiesterase $IC_{50} = 2 \ \mu$ M).
Rolipram	557330	Selective	Selective competitive inhibitor of cAMP-specific phospho- diesterase (IC ₅₀ = 800 nM). A rolipram-insensitive PDE IV subtype is also known to exist.

Please call our Technical Service Department or your local sales office for more information on these products.

United Kingdom Tel (0115) 943 0840 Fax (0115) 943 0951 customer.service@cnuk.co.uk

USA, Canada, & Mexico Tel (800) 854-3417 Fax (800) 776-0999 technical@calbiochem.com VWR Scientific Products www.vwrsp.com or VWR Canlab www.vwrcanlab.com Tel (800) 932-5000

Germany Tel (06196) 63955 Fax (06196) 62361 customer.service@calbiochem.novabiochem.de