

Technical Data Sheet

Mannitol Salt Phenol-Red Agar acc. harm. EP/USP/JP

Ordering number: 1.05404.0500

Mannitol salt phenol-red agar is a modified version of the selective agar proposed by Chapman (1945) for the isolation and presumptive identification of Staphylococcus aureus in non-sterile pharmaceuticals and food.

This medium complies with the specifications given by the harmonized methods of EP, USP, JP for Microbial Examination of Non-sterile Products: Tests for Specified Microorganisms.

Mode of Action

The composition of Mannitol Salt Agar supports the growth of Staphylococcus aureus whereas many other microorganisms are inhibited by the high salt content of 7.5 %. Some halophilic Enteroccci and Vibriones are able to grow on Mannitol Salt Agar.

In contrast to the most other staphylococci S. aureus is able to build acids from mannitol. Therefore, they build up yellow colonies with yellow zones. S. capitis, S. simulans, S. carnosus, S. scuri, S. lentus, S. gallinarum are also mannitol positive.

Typical Composition

Peptone from Casein	5 g/l
Enzymatic Digest of Animal Tissue	5 g/l
Beef Extract	1 g/l
NaCl	75 g/l
D(-)-Mannitol	10 g/l
Phenol Red	0.025 g/l
Agar-Agar	12 g/l

Preparation

Suspend 108 g/l. Autoclave (15 min at 121 ℃). Pour plates.

The appearance of the plates is clear and red.

The pH value at 25 ℃ is in the range of 7.2-7.6.

Storage

The product can be used for sampling until the expiry date if stored upright, protected from light and properly sealed at +15 $^{\circ}$ C to +25 $^{\circ}$ C.

After first opening of the bottle the content can be used up to the expiry date when stored dry and tightly closed at +15 $\,^{\circ}$ C to +25 $\,^{\circ}$ C.

Disposal

Please mind the respective regulations for the disposal of used culture medium (e.g. autoclave for 20 min at 121 $^{\circ}$ C, disinfect, incinerate etc.).

Experimental Procedure

Inoculate by spreading the sample on the surface of the medium. Inoculation should be massive because of the strong inhibitory effect of the medium.

Incubation: up to 3 days at 30-35 ℃ aerobically.

Further tests should be performed to confirm the diagnosis.

Appearance of Colonies	Microorganisms
Surrounded by bright yellow zones, abundant growth	Mannitol-positive: Staphylococcus aureus
No colour change, growth is usually poorer	Mannitol-negative: Staphylococcus epidermis and others

Quality Control

Control Strains	ATCC#	Inoculum CFU	Incubation	Expected Results	
Staphylococcus aureus	25923 10-10	10.100	≤ 18 h at 30-35 ℃	Recovery ≥ 50 %	
		10-100	24 h at 30-35 ℃	Color change to yellow	
Staphylococcus aureus 6	6538	10-100	≤ 18 h at 30-35 ℃	Recovery ≥ 50 %	
			24 h at 30-35 ℃	Color change to yellow	
Staphylococcus epidermidis	12228	10-100	18-72 h at 30-35 ℃	No color change to yellow	
Staphylococcus epidermidis	14990	10-100	18-72 h at 30-35 ℃	No color change to yellow	
Proteus mirabilis	12453	10-100	18-72 h at 30-35 ℃	No color change to yellow	
Escherichia coli	8739	≥ 100	≥ 72 h at 30-35 ℃	Growth inhibited	

Please refer to the actual batch related Certificate of Analysis.

Literature

Chapman, G.H. (1945): The significance of sodium chloride in studies of *Staphylococci*. J. Bact. **50**: 201-203.

EN ISO 6888-2 (1999) + A1 (2003): Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) – Part 2: Technique using rabbit plasma fibrinogen agar medium.

European Directorate for the Quality of Medicines and Healthcare. (2014): The European Pharmacopoeia. 8th Ed. Chapter 2.6.13 Microbiological examination of non-sterile products: Test for specified products. Strasbourg, France.

Japanese Ministry of Health, Labour and Welfare. (2011): The Japanese Pharmacopoeia. 16th Ed. Chapter 4.05 Microbial Limit Test II. Microbiological examination of non-sterile products: Test for specified products. Japanese Ministry of Health, Labour and Welfare. Tokyo, Japan.

United States Pharmacopoeia 38 NF 33 (2015): <62> Microbiological examination of non-sterile products: Tests for specified microorganisms.

Ordering Information

Product	Cat. No.	Pack size	Other pack sizes available
Mannitol Salt Phenol-red Agar for microbiology	1.05404.0500	500 g	
Tryptic Soy Broth	1.05459.0500	500 g	5 kg, 25 kg
DNase Test Agar for microbiology	1.10449.0500	500 g	

Merck KGaA, 64271 Darmstadt, Germany Fax: +49 (0) 61 51 / 72-60 80 mibio@merckgroup.com www.merckmillipore.com/biomonitoring Find contact information for your country at: www.merckmillipore.com/offices
For Technical Service, please visit: www.merckmillipore.com/techservice

