

Analisi dell'acqua, degli alimenti e ambientali

Kit analitici, strumenti e accessori

Merck Millipore + Sigma Aldrich = il settore Life Science di Merck

Il settore life science di Merck KGaA, Darmstadt (Germania), riunendo i prodotti e i servizi di prima qualità, le risorse innovative e l'eccezionale talento di Merck Millipore e Sigma-Aldrich, dà vita a un'azienda leader in tutto il mondo nel campo delle life science. La nostra nuova vivace veste grafica rispecchia questa entusiasmante trasformazione. Accesa e peculiare, intrigante e fantasiosa, calda e sicura. **Mostra esattamente quello che ci si può aspettare da Merck: un futuro radioso.**

SIRMO materiali di laboratorio, tecnologie e servizi della massima qualità. Ci adoperiamo per rendere le analisi di acqua, alimenti e ambientali più semplici, rapide e ben riuscite. UN'AZIENDA LEADER DER LE LIFE SCIENCE

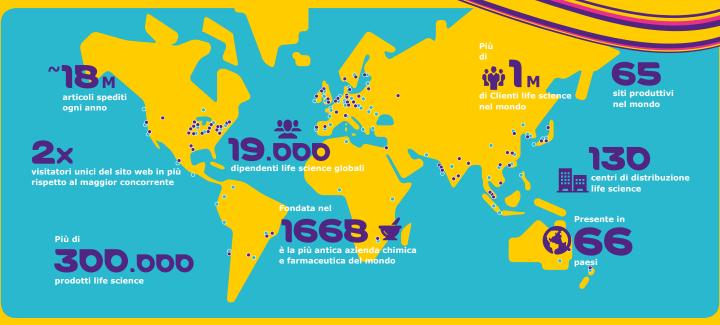
Il logo vivace

Ci prefiggiamo di risolvere le maggiori difficoltà dell'industria e dell'ambiente, collaborando con la comunità scientifica internazionale. **Forniamo** a tecnici ed esperti ambientali

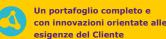
Abbiamo un solo logo Merck. Ma esso può assumere 8 diversi colori brillanti.

La M vibrante

La M vibrante non è un logo. È un simbolo che accomuna tutti i nostri settori, anche quelli statunitensi e canadesi. Per ricordare sempre che con Merck la scienza e la tecnologia sono vibranti.


SETE DI ACQUA PURA

Da più di 100 anni siamo leader specializzati in analisi dell'acqua rapide e precise. Dalla A di arsenico alla Z di zinco, i nostri dispositivi e kit analitici consentono di determinare praticamente qualunque sostanza. Che si tratti di tubazioni, bottiglie o laghi, possiamo aiutarla ad analizzare l'acqua con la massima precisione, per avere la certezza che si possa sorseggiarla, berla o sguazzarci senza pericolo.


FAME DI SICUREZZA ALIMENTARE

I nostri strumenti, reagenti e standard di riferimento certificati aiutano a monitorare accuratamente la qualità degli alimenti in conformità alle normative internazionali. Così, ogni volta che qualcuno addenterà un Suo prodotto, ovunque si trovi, non proverà altro che piacere.

Life Science: informazioni e cifre

I nostri punti di forza

indice

applicazioni e flussi di lavoro

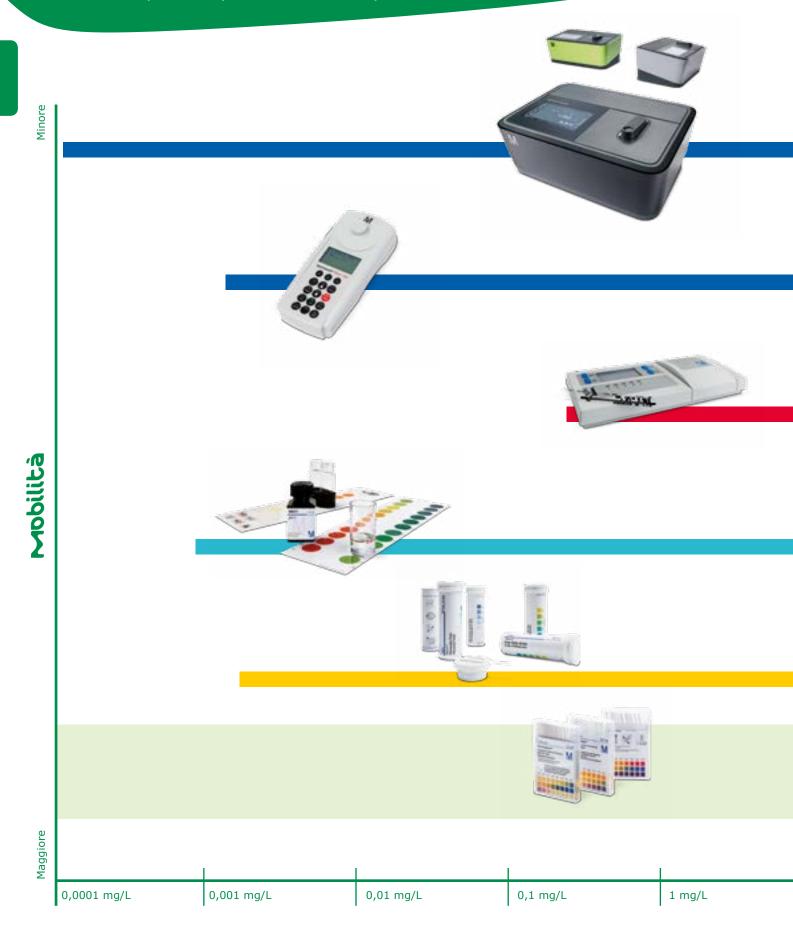
Flusso di lavoro per acque di riscaldamento e raffreddamento > Pagina 20

Flusso di lavoro per acque reflue > Pagina 22

Flusso di lavoro per acque potabili > Pagina 24

Flusso di lavoro per acque in bottiglia > Pagina 26

Flusso di lavoro per birrifici > Pagina 28



Flusso di lavoro nel food & beverage > Pagina 30

Parametri dalla A alla Z	Panoramica dei kit analitici a lettura visiva e strumentale		6
Fotometria	Sicurezza nell'analisi dell'acqua Spectroquant®		32
Analisi turbidimetriche	Faccia chiarezza in tutte le acque Turbiquant®		108
Riflettometria	Monitoraggio facile in-process Reflectoquant®	the Same	114
Kit per analisi colorimetriche e titrimetriche	Varietà e semplicità d'impiego MColortest™		122
Strisce reattive	Universali, rapide e semplici MQuant™		138
Strisce e cartine indicatrici per pH	La determinazione del pH non è più un problema MColorpHast™		148
Prodotti complementari	Sia pronto a tutto Analisi e monitoraggio		154
Servizi di assistenza	Chieda di più Informazioni utili dalla A alla Z Indice dei numeri di catalogo		164

Intervalli di misura, panoramica

Portfolio dei prodotti per l'analisi di acqua e alimenti

Spectroquant® Prove

www.merckmillipore.com/photometry

Spettrofotometri sicuri e durevoli con oltre 200 kit analitici per analisi semplificate per le acque reflue, per le acque potabili e per acque di processo

> Pagina 36

0,00025 mg/L - 90.000 mg/L

Spectroquant® Move 100

www.merckmillipore.com/photometry

Piccolo colorimetro portatile per determinazioni "in situ" rapide e affidabili di tutti i più rilevanti parametri per le acque potabili e reflue > Pagina 40

0,004 mg/L - 90.000 mg/L

Riflettometri RQflex®

www.merckmillipore.com/reflectometry

Sistema completo di riflettometro, kit analitici e strisce reattive per precise analisi quantitative "in situ" dei parametri critici

> Pagina 114

0,2 mg/L - 2.500 mg/L

Kit per test colorimetrici MColortest™

www.merckmillipore.com/colorimetric-test-kits

Pratici kit analitici con schede cromatiche brillanti e di elevata qualità per precise analisi dell'acqua in pochi minuti

> Pagina 122

0,002 mg/L - 1.500 mg/L

Strisce reattive MQuant™

www.merckmillipore.com/test-strips

Strisce reattive portatili e di semplice impiego per determinazioni semiquantitative di ioni, sostanze organiche e inorganiche in una gran varietà di campioni

> Pagina 138

 $0.005 \, \text{mg/L} = 3.000 \, \text{mg/L}$

pH 0 - 14

Cartine indicatrici per pH MColorpHast™

www.merckmillipore.com/pH-tests

Strisce e cartine indicatrici per pH di elevata qualità per misurazioni affidabili in un ampio intervallo di pH e in tutti i tipi di matrice (anche nei liquidi torbidi)

> Pagina 148

10 mg/L 100 mg/L 1.000 mg/L 10.000 mg/L 100.000 mg/L

Parametri dalla A alla Z

Panoramica dei kit analitici a lettura visiva e strumentale

I nostri saggi rapidi offrono numerose soluzioni per determinare la concentrazione dei singoli parametri.

Utilizzi la tabella dei parametri per individuare il saggio più adatto per la Sua applicazione.

- Selezioni il parametro desiderato (in ordine alfabetico)
- Cerchi l'intervallo di misura desiderato, quindi scelga i prodotti più adatti per il Suo lavoro
- Può utilizzare i numeri di catalogo per ordinare i prodotti direttamente
- Per maggiori informazioni sui diversi prodotti visiti la pagina web: www.merckmillipore.com/test-kits

Parametri A

Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
Acetato di piombo (II), cartina	Solfuri da 10 mg/L	3 x 4,8 m	1.09511.0003	Cartina reattiva	146
Acidi grassi liberi	0,5 - 3,0 mg/g KOH	100	1.17046.0001		144
Acidi organici volatili, kit in cuvetta	50 - 3.000 mg/L acido acetico	25	1.01749.0001	Kit in cuvetta	58
Acidi organici volatili, kit	50 - 3.000 mg/L acido acetico	100	1.01809.0001	Kit di reagenti	58
Acido ascorbico, kit	25 - 450 mg/L acido ascorbico	50	1.16981.0001	Strisce reattive	120
Acido ascorbico, kit RQeasy®	25 - 450 mg/L acido ascorbico	50	1.17963.0001	Strisce reattive	120
Acido ascorbico, kit	50 - 2.000 mg/L acido ascorbico	100	1.10023.0001	Strisce reattive	144
Acido cianurico, kit	2-160 mg/L acido cianurico	100	1.19253.0001	Kit di reagenti	58
Acido isoascorbico (acido eritorbico)	vedere Sequestranti dell'ossigeno			Kit di reagenti	74
Acido lattico, kit	3 – 60,0 mg/L acido lattico	50	1.16127.0001	Strisce reattive	120
Acido malico, kit	5,0 - 60,0 mg/L acido malico	50	1.16128.0001	Strisce reattive	120
Acido peracetico, kit	1,0 - 22,5 mg/L acido peracetico	50	1.16975.0001	Strisce reattive	120
Acido peracetico, kit	5 – 50 mg/L acido peracetico	100	1.10084.0001	Strisce reattive	144
Acido peracetico, kit	20 – 100 mg/L acido peracetico	50	1.17956.0001	Strisce reattive	120
Acido peracetico, kit	75 – 400 mg/L acido peracetico	50	1.16976.0001	Strisce reattive	120
Acido peracetico, kit	100 – 500 mg/L acido peracetico	100	1.10001.0001	Strisce reattive	144
Acido peracetico, kit	500 – 2.000 mg/L acido peracetico	100	1.17922.0001	Strisce reattive	144
Acido silicico	vedere Silicati			Kit di reagenti	76
Acido solfidrico	vedere Solfuri			Kit di reagenti	76
Alcalinità totale	vedere Capacità acida fino a pH 4,3 o	Alcalinità		Kit in cuvetta	58
Alcalinità, kit	0,1 - 10 mmol/L	200	1.11109.0001	Titolazione con pipetta	128
Alluminio, kit in cuvetta	0,02 - 0,50 mg/L Al	25	1.00594.0001	Kit in cuvetta	58
Alluminio, kit	0,020 - 1,20 mg/L Al	350	1.14825.0001	Kit di reagenti	58
Alluminio, kit	0,07 - 0,8 mg/L Al	185	1.14413.0001	Scheda cromatica	128
Alluminio, kit	0,1 - 6 mg/L Al	150	1.18386.0001	Disco cromatico	128
Alluminio, kit	10 – 250 mg/L Al	100	1.10015.0001	Strisce reattive	144
Amido e ioduro di potassio, cartina	Agenti ossidanti	3 x 4,8 m	1.09512.0003	Cartina reattiva	146
Ammoniaca, libera	0,000 - 3,0 mg/L NH ₃ -N			Applicazione	58
Ammonio, kit in cuvetta	0,000 - 3,65 mg/L NH ₃ 0,010 - 2,000 mg/L NH ₄ -N	25	1.14739.0001	Kit in cuvetta	58
Ammonio kit	0,01 - 2,58 mg/L NH ₄	350	1 14752 0002	Vit di rongonti	58
Ammonio, kit	0,010 - 3,00 mg/L NH ₄ -N 0,013 - 3,86 mg/L NH ₂	250 500	1.14752.0002	Kit di reagenti	36
Ammonio, kit	0,025 - 0,4 mg/L NH ₄	70	1.14732.0001	Scheda cromatica	128
Ammonio, kit	0,05 - 0,8 mg/L NH ₄	100	1.14400.0001	Scheda cromatica	128
Ammonio, kit	0,2 – 5 mg/L NH ₄	50	1.08024.0001	Comparatore	128
Animonio, at	0,2 3 mg/ E Wn ₄	50	1.00024.0001	scorrevole	120
Ammonio, kit	0,2 – 7 mg/L NH ₄	50	1.16892.0001	Strisce reattive	120
Ammonio, kit	0,2 – 8 mg/L NH ₄	200	1.14423.0002	Scheda cromatica	128
Ammonio, kit	0,2 – 8 mg/L NH ₄	200	1.14750.0002	Disco cromatico	128
Ammonio, kit in cuvetta	0,20 - 8,00 mg/L NH ₄ -N 0,26 - 10,30 mg/L NH ₄	25	1.14558.0001	Kit in cuvetta	58
Ammonio, kit	0,5 - 10 mg/L NH ₄	150	1 11117 0001	Scheda cromatica	128
	, , ,	50			
Ammonio, kit per acque dolci e di mare	0,5 – 10 mg/L NH ₄		1.14657.0001	Scheda cromatica	128
Ammonio, kit in cuvetta	0,5 – 16,0 mg/L NH ₄ -N 0,6 – 20,6 mg/L NH ₄	25	1.14544.0001	Kit in cuvetta	58

Parametri A-C

	Parametro	Intervallo di misura	Nº di test	N° Cat.	Sistema/Tipo	Pagina
A	Ammonio, kit	2,0 – 150 mg/L NH_4 - N 2,6 – 193 mg/L NH_4	100	1.00683.0001	Kit di reagenti	58
	Ammonio, kit in cuvetta	4,0 – 80,0 mg/L NH ₄ -N 5,2 – 103,0 mg/L NH ₄	25	1.14559.0001	Kit in cuvetta	58
	Ammonio, kit	5,0 - 20,0 mg/L NH ₄	50	1.16899.0001	Strisce reattive	120
	Ammonio, kit	10 – 400 mg/L NH ₄	100	1.10024.0001		144
	Ammonio, kit	20 – 180 mg/L NH ₄	50	1.16977.0001	Strisce reattive	120
	Anidride carbonica, kit	1,25 mg/L $\rm CO_2$ 2,5 mg/L $\rm CO_2$ 5 mg/L $\rm CO_2$	100	1.17179.0001	Titolazione con flacone contagocce	128
	Antimonio	0,10 - 8,00 mg/L Sb			Applicazione	60
	AOX, kit in cuvetta	0,05 - 2,50 mg/L AOX	25	1.00675.0001	Kit in cuvetta	60
	Argento, kit	0,25 - 3,00 mg/L Ag	100	1.14831.0001	Kit di reagenti	60
	Arsenico, kit	0,001 - 0,100 mg/L As	30	1.01747.0001	Kit di reagenti	60
	Arsenico, kit	0,005 - 0,5 mg/L As	100	1.17927.0001	Strisce reattive	144
	Arsenico, kit	0,02 - 3 mg/L As	100	1.17917.0001		144
	Assorbanza	-0,300 – 3,000 A			Metodo fisico	60
	Azoto (totale), kit in cuvetta	0,5 - 15,0 mg/L N	25	1.00613.0001	Kit in cuvetta	60
	Azoto (totale), kit in cuvetta	0,5 – 15,0 mg/L N	25	1.14537.0001	Kit in cuvetta	60
	Azoto (totale), kit in cuvetta	10 – 150 mg/L N	25	1.14763.0001	Kit in cuvetta	60
В	Biossido di cloro, kit	0,020 - 0,55 mg/L ClO ₂	300	1.18754.0001	Scheda cromatica	128
	Biossido di cloro, kit	0,020 - 10,00 mg/L ClO ₂	200	1.00608.0001	Kit di reagenti	60
	Biossido di cloro, kit	0,50 - 28 mg/L CIO ₂	300	1.18756.0001	Disco cromatico	128
	BOD, kit in cuvetta	0,5 - 3.000 mg/L BOD	50	1.00687.0001	Kit in cuvetta	60
	Boro, kit	0,050 - 0,800 mg/L B	60	1.14839.0001	Kit di reagenti	60
	Boro, kit in cuvetta	0,05 - 2,00 mg/L B	25	1.00826.0001	Kit in cuvetta	60
	Bromati	0,5 – 200,0 μg/L BrO ₃ 1,0 – 200,0 μg/L BrO ₃			Applicazione	60
	Bromo, kit	0,020 - 10,00 mg/L Br ₂	200	1.00605.0001	Kit di reagenti	60
C	Cadmio, kit	0,0020 - 0,500 mg/L Cd	55	1.01745.0001	Kit di reagenti	62
	Cadmio, kit in cuvetta	0,025 - 1,000 mg/L Cd	25	1.14834.0001	Kit in cuvetta	62
	Calcio, kit	0,20 - 4,00 mg/L Ca	100	1.00049.0001	Kit di reagenti	62
	Calcio, kit	2 – 200 mg/L Ca	200	1.11110.0001	Titolazione con pipetta	128
	Calcio, kit	2,5 - 45,0 mg/L Ca	50	1.16993.0001	Strisce reattive	120
	Calcio, kit	5 – 125 mg/L Ca	50	1.16125.0001	Strisce reattive	120
	Calcio, kit	5 - 160 mg/L Ca 7 - 224 mg/L CaO 12 - 400 mg/L CaCO ₃ 1,0 - 15,0 mg/L Ca 1,4 - 21,0 mg/L CaO 2,5 - 37,5 mg/L CaCO ₃	100	1.14815.0001	Kit di reagenti	62
	Calcio, kit	10 - 100 mg/L Ca	60	1.10083.0001	Strisce reattive	144
	Calcio, kit in cuvetta	10 – 250 mg/L Ca 14 – 350 mg/L CaO 25 – 624 mg/L CaCO ₃	25	1.00858.0001	Kit in cuvetta	62
	Capacità acida fino a pH 4,3 (alcalinità totale), kit in cuvetta	0,40 - 8,00 mmol/L 20 - 400 mg/L CaCO ₃	120	1.01758.0001	Kit in cuvetta	62

Parametri C

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
C	Carboidrazide	vedere Sequestranti dell'ossigeno			Kit di reagenti	74
	Carbonio organico totale	vedere TOC			Kit in cuvetta	78
	Cartina indicatrice rosso Congo	pH <3 azzurro-violetto /	3 x 4,8 m	1.09514.0003	Cartina indicatrice	152
		>5 rosso-arancio			per pH	
	Cianuri, kit	0,002 - 0,03 mg/L CN	65	1.14417.0001	Scheda cromatica	128
	Cianuri, kit per la determinazione dei	0,0020 - 0,500 mg/L CN	100	1.09701.0001	Kit di reagenti	62
	cianuri liberi e facilmente rilasciati					
	Cianuri, kit in cuvetta	0,010 - 350 μg/L CN	25	1.02531.0001	Kit in cuvetta	62
	Cianuri, kit in cuvetta per la	0,010 - 0,500 mg/L CN	25	1.14561.0001	Kit in cuvetta	62
	determinazione dei cianuri liberi e					
	facilmente rilasciati					
	Cianuri, kit	0,03 - 0,7 mg/L CN	200	1.14429.0001	Scheda cromatica	128
	Cianuri, kit	0,03 - 5 mg/L CN	200	1.14798.0001	Disco cromatico	128
	Cianuri, kit	1 – 30 mg/L CN	100	1.10044.0001	Strisce reattive	144
	Cloro (cloro libero), kit	$0.01 - 0.3 \text{ mg/L Cl}_2$	400	1.14434.0001	Scheda cromatica	128
	Cloro (cloro libero), kit	0,010 - 6,00 mg/L Cl ₂	200	1.00598.0002	Kit di reagenti	62
			1.200	1.00598.0001		
	Cloro (cloro libero), kit in cuvetta	0,03 - 6,00 mg/L Cl ₂	200	1.00595.0001	Kit in cuvetta	62
	Cloro (cloro libero), kit	0,25 - 15 mg/L Cl ₂	1.000	1.14976.0001	Disco cromatico	128
	Cloro (cloro libero), kit	0.5 – 10.0 mg/L Cl_2	50	1.16896.0001	Strisce reattive	120
	Cloro (cloro libero), kit	0,5 - 20 mg/L Cl ₂	75	1.17925.0001		144
	Cloro (cloro libero), kit	25 - 500 mg/L Cl ₂	100	1.17924.0001	Strisce reattive	144
	Cloro (cloro libero), kit per acque dolci	0,1 - 2 mg/L Cl ₂	100	1.14670.0001	Scheda cromatica	128
	e di mare					
	Cloro (cloro libero), kit con reag.	0,1 - 2 mg/L Cl ₂	600	1.14978.0001	Disco cromatico	128
	liquidi					
	Cloro (cloro libero) e pH, kit	0,1 - 1,5 mg/L Cl ₂	150 (cloro)	1.11160.0001	Comparatore	128
		pH 6,5 – 7,9	150 (pH)		scorrevole	
	Cloro (cloro libero e totale), kit	0,010 - 6,00 mg/L Cl ₂	200 (100	1.00599.0001	Kit di reagenti	62
			ciascuno)			
	Cloro (cloro libero e totale), kit in	0,03 - 6,00 mg/L Cl ₂	200 (100	1.00597.0001	Kit in cuvetta	62
	cuvetta		ciascuno)			400
	Cloro (cloro libero e totale), kit con	0,1 – 2 mg/L Cl ₂	800 (400	1.14801.0001	Disco cromatico	128
	reag. liquidi	0.35 15	ciascuno)	1 14026 0001	Diana augustias	120
	Cloro (cloro libero e totale), kit	0,25 - 15 mg/L Cl ₂	800 (400 ciascuno)	1.14826.0001	Disco cromatico	128
	Cloro (cloro libero e totale) e pH, kit	0,1 - 1,5 mg/L Cl ₂	200 (cloro)	1.11174.0001	Recipiente di	130
	Cloro (cloro libero e totale) e pri, kit	pH 6,8 – 7,8	200 (cloro) 200 (pH)	1.11174.0001	comparazione	150
	Cloro (cloro totale), kit	0,010 - 6,00 mg/L Cl ₂	200 (pH) 200	1.00602.0001	Kit di reagenti	62
	Cloro (cloro totale), kit	0,010 0,00 mg/ L Cl ₂	1.200	1.00602.0001	Nit di reagenti	UZ.
	Cloro, reagente liquido Cl ₂ -1	0,010 - 6,00 mg/L Cl ₂	200	1.00086.0001	Kit di reagenti	62
	Cloro, reagente liquido Cl ₂ -2	0,010 - 6,00 mg/L Cl ₂	400	1.00087.0001	Kit di reagenti	62
	Cloro, reagente liquido Cl ₂ 2	0,010 - 6,00 mg/L Cl ₂	600	1.00088.0001	Kit di reagenti	62
	Clorofilla a e feofitina a	5,515 5,500 mg/L Cl ₂	000	1.00000.0001	Applicazione	64
	Clorofilla a, b, c				Applicazione	64
	Cloruri, kit	0,10 - 5,00 mg/L Cl	100	1.01807.0001	Kit di reagenti	64
	Cloruri, kit in cuvetta	0,5 - 15,0 mg/L Cl	25	1.01807.0001	Kit di reagenti Kit in cuvetta	64
	Cloruri, kit	2 – 200 mg/L Cl		1.11106.0001		130
	Cioruit, Kit	2 - 200 Hig/L Ci	200	1.11100.0001	Titolazione con pipetta	130

Parametri C-D

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
C	Cloruri, kit	2,5 - 250 mg/L Cl	100	1.14897.0001	Kit di reagenti	64
			175	1.14897.0002		
	Cloruri, kit	3 – 300 mg/L Cl	200	1.14753.0001	Disco cromatico	130
	Cloruri, kit in cuvetta	5 – 125 mg/L Cl	25	1.14730.0001	Kit in cuvetta	64
	Cloruri, kit	5 – 300 mg/L Cl	400	1.14401.0001	Scheda cromatica	130
	Cloruri, kit	1 goccia corrisponde a 25 mg/L Cl	100	1.11132.0001	Titolazione con flacone contagocce	130
	Cloruri, kit	500 – 3.000 mg/L Cl	100	1.10079.0001	Strisce reattive	144
	Cobalto, kit	10 - 1.000 mg/L Co	100	1.10002.0001	Strisce reattive	144
	COD, kit in cuvetta	4,0 - 40,0 mg/L COD	25	1.14560.0001	Kit in cuvetta	64
	COD, kit in cuvetta	5,0 - 80,0 mg/L COD		1.01796.0001	Kit in cuvetta	64
	COD, kit in cuvetta	10 - 150 mg/L COD	25	1.14540.0001	Kit in cuvetta	64
	COD, kit in cuvetta	15 - 300 mg/L COD	25	1.14895.0001	Kit in cuvetta	64
	COD, kit in cuvetta	25 - 1.500 mg/L COD	25	1.14541.0001	Kit in cuvetta	64
	COD, kit in cuvetta	50 - 500 mg/L COD	25	1.14690.0001	Kit in cuvetta	64
	COD, kit in cuvetta	300 - 3.500 mg/L COD	25	1.14691.0001	Kit in cuvetta	64
	COD, kit in cuvetta	500 - 10.000 mg/L COD	25	1.14555.0001	Kit in cuvetta	64
	COD, kit in cuvetta	5.000 - 90.000 mg/L COD	25	1.01797.0001	Kit in cuvetta	64
	COD, kit in cuvetta per acque di mare/elevati livelli di cloruri	5,0 - 60,0 mg/L COD	25	1.17058.0001	Kit in cuvetta	64
	COD, kit in cuvetta per acque di mare/elevati livelli di cloruri	50 – 3.000 mg/L COD	25	1.17059.0001	Kit in cuvetta	64
	COD, kit in cuvetta (senza Hg)	10 - 150 mg/L COD	25	1.09772.0001	Kit in cuvetta	66
	COD, kit in cuvetta (senza Hg)	100 - 1.500 mg/L COD	25	1.09773.0001	Kit in cuvetta	66
	Coefficiente di assorbimento spettrale, colore	0,5 - 250 m ⁻¹			Applicazione	66
	Coefficiente di attenuazione spettrale	0.5 - 250 m ⁻¹			Applicazione	66
	Colore, ADMI				Metodo fisico	66
	Colore, Hazen				Metodo fisico	66
	Colore, coefficiente di assorbimento sp	ettrale			Metodo fisico	66
	Colore, colore reale				Metodo fisico	66
	Colore, kit	5 – 150 Hz	Illimitati	1.14421.0001	Scheda cromatica	130
	Composti di ammonio quaternario	vedere anche Tensioattivi (cationici)			Kit in cuvetta	76
	Composti di ammonio quaternario	10 – 500 mg/L benzalconio cloruro	100	1.17920.0001	Strisce reattive	144
	Cromati, kit per la determinazione del	<u>.</u>	250	1.14758.0001	Kit di reagenti	68
	cromo (VI)	0,02 - 6,69 mg/L CrO ₄	255			
	Cromati, kit in cuvetta per la	0,05 – 2,00 mg/L Cr	25	1.14552.0001	Kit in cuvetta	68
	determinazione del cromo (VI) e del	0,11 - 4,46 mg/L CrO ₄				
	cromo totale					
	Cromati, kit	0,01 - 0,22 mg/L CrO ₄	150	1.14402.0001	Scheda cromatica	130
	Cromati, kit	0,2 – 3,6 mg/L CrO ₄	300	1.14441.0001	Scheda cromatica	130
	Cromati, kit	0,2 - 22 mg/L CrO ₄	300	1.14756.0001	Disco cromatico	130
	Cromati, kit	3 – 100 mg/L CrO ₄	100	1.10012.0001	Strisce reattive	144
	Cromo in bagni galvanici	4 – 400 g/L CrO ₃			Applicazione	68
D	DEHA (dietilidrossilammina)	vedere Sequestranti dell'ossigeno			Kit di reagenti	68
	Detergenti	vedere Tensioattivi			Kit in cuvetta	68

Parametri D-F

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
D	Domanda biochimica di ossigeno	vedere BOD			Kit in cuvetta	60
	Domanda chimica di ossigeno	vedere COD			Kit in cuvetta	64
	Durezza carbonatica, kit	5 – 30 °e	100	1.10648.0001	Strisce reattive	144
	Durezza carbonatica, kit per acque	1 goccia corrisponde a 1,25 °e	50	1.14653.0001	Titolazione con	130
	dolci e di mare				flacone contagocce	
	Durezza carbonatica/ Capacità acida	0,25 - 25 °e	300	1.08048.0001	Titolazione con pipetta	130
	fino a pH 4,3 ("SBV", ANC), kit	(ANC 0,1 - 7,2 mmol/L)				
	Durezza carbonatica/ Capacità acida	1 goccia corrisponde a 1,25 °e	100	1.11103.0001	Titolazione con	130
	fino a pH 4,3 ("SBV", ANC), kit				flacone contagocce	
	Durezza dell'acqua	vedere Durezza residua o Durezza tota	ale		Scheda cromatica	130
	Durezza residua, kit	0,05 - 0,19 °e	400	1.11142.0001	Scheda cromatica	130
		0,7 - 2,7 mg/L CaCO ₃				
	Durezza residua, kit in cuvetta	0,50 - 5,00 mg/L Ca 0,070 - 0,700 °d 0,087 - 0,874 °e	25	1.14683.0001	Kit in cuvetta	68
		0,12 - 1,25 °f 0,70 - 7,00 mg/L CaO 1,2 - 12,5 mg/L CaCO ₃				
	Durezza totale, kit	0,13 - 7 °e (1 - 100 mg/L CaCO ₃)	300	1.08047.0001	Titolazione con pipetta	130
	Durezza totale, kit	0,1 - 30,0 °d	50	1.16997.0001	Strisce reattive	120
	Durezza totale, kit	0,25 - 25 °e (0,1 - 3,6 mmol/L)	300	1.08039.0001	Titolazione con pipetta	130
	Durezza totale, kit in cuvetta	5 – 215 mg/L Ca 0,7 – 30,1 °d 0,9 – 37,6 °e	25	1.00961.0001	Kit in cuvetta	68
		1,2 – 53,7 °f 7 – 301 mg/L CaO				
		12 – 537 mg/L CaCO ₃				
	Durezza totale, kit	1 goccia corrisponde a 1,25 °e	100	1.11104.0001	Titolazione con flacone contagocce	130
	Durezza totale, kit	1 goccia corrisponde a 20 mg/L CaCO	3 200	1.08312.0001	Titolazione con flacone contagocce	130
	Durezza totale, kit per acque dolci	1 goccia corrisponde a 1,25 °e	50	1.14652.0001	Titolazione con flacone contagocce	130
	Durezza totale, kit	4 – 26 °e	100	1.10025.0001	Strisce reattive	144
	Durezza totale, kit	4 - 26 °e	1.000	1.10032.0001		144
	Durezza totale, kit	4 – 26 °e	5.000	1.10029.0001	Strisce reattive	144
	Durezza totale, kit	6 - 31 °e	100	1.10046.0001		144
	Durezza totale, kit	6 - 31 °e	25.000	1.10047.0013	Confezionate singolarmente	144
	Durezza totale, kit	<1,5 - >2,5 mmol/L CaCO ₃	100	1.17934.0001	Strisce reattive	144
F	Fenolftaleina, cartina	pH <8,5 incolore / >8,5 rosso	3 x 4,8 m	1.09521.0003	Cartina indicatrice per pH	152
	Fenolo, kit	0,002 – 0,100 mg/L fenolo 0,025 – 5,00 mg/L fenolo	50 - 250	1.00856.0001	Kit di reagenti	68
	Fenolo, kit in cuvetta	0,10 - 2,50 mg/L fenolo	25	1.14551.0001	Kit in cuvetta	68
	Feofitina a e clorofilla a				Applicazione	68

Parametri F

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
F	Ferro, kit	0,0025 - 5,00 mg/L Fe	250 1.000	1.14761.0002 1.14761.0001	Kit di reagenti	68
	Ferro, kit	0,01 - 0,2 mg/L Fe	300	1.14403.0001	Scheda cromatica	130
	Ferro, kit	0,010 - 5,00 mg/L Fe	150	1.00796.0001	Kit di reagenti	68
	Ferro, kit per acque dolci e di mare	0,05 - 1 mg/L Fe	50	1.14660.0001	Scheda cromatica	130
	Ferro, kit in cuvetta	0,05 - 4,00 mg/L Fe	25	1.14549.0001	Kit in cuvetta	68
	Ferro, kit	0,1 - 5 mg/L Fe	500	1.14759.0001	Disco cromatico	130
	Ferro, kit	0,1 - 50 mg/L Fe	200	1.11136.0001	Recipiente di comparazione	130
	Ferro, kit	0,2 - 2,5 mg/L Fe	500	1.14438.0001	Scheda cromatica	130
	Ferro, kit	0,25 – 15 mg/L Fe	300	1.14404.0001	Scheda cromatica	132
	Ferro, kit	0,5 - 20,0 mg/L Fe(II)	50	1.16982.0001	Strisce reattive	120
	Ferro, kit in cuvetta	1,0 - 50,0 mg/L Fe	25	1.14896.0001	Kit in cuvetta	68
	Ferro, kit	3 – 500 mg/L Fe(II)	100	1.10004.0001	Strisce reattive	144
	Ferro, kit	20 – 200 mg/L Fe(II)	50	1.16983.0001	Strisce reattive	120
	Fluoruri, kit	0,02 – 2,00 mg/L F	250 mL	1.00822.0250	Kit di reagenti	68
	Fluoruri, kit in cuvetta	0,10 - 1,80 mg/L F 0,025 - 0,500 mg/L F	25	1.00809.0001	Kit in cuvetta	68
	Fluoruri, kit	0,10 - 20,0 mg/L F	100	1.14598.0001	Kit di reagenti	68
			250	1.14598.0002		
	Fluoruri, kit	0,15 - 0,8 mg/L F	100	1.18771.0001	Scheda cromatica	132
	Formaldeide, kit	0,02 - 8,00 mg/L HCHO	100	1.14678.0001	Kit di reagenti	70
	Formaldeide, kit	0,1 - 1,5 mg/L HCHO	100	1.08028.0001	Comparatore scor- revole	132
	Formaldeide, kit in cuvetta	0,10 - 8,00 mg/L HCHO	25	1.14500.0001	Kit in cuvetta	70
	Formaldeide, kit	1,0 - 45,0 mg/L HCHO	50	1.16989.0001	Strisce reattive	120
	Formaldeide, kit	10 - 100 mg/L HCHO	100	1.10036.0001	Strisce reattive	144
	Fosfati (ortofosfati), kit	0,0025 − 5,00 mg/L PO₄-P	220	1.14848.0002	Kit di reagenti	70
		0,0077 - 15,30 mg/L PO ₄ 0,0057 - 11,46 mg/L P ₂ O ₅	420	1.14848.0001		
	Fosfati, kit	0,046 - 0,43 mg/L PO ₄	200	1.18394.0001	Scheda cromatica	132
	Fosfati, kit RQflex® plus	0,1 - 5,0 mg/L PO ₄	100	1.17942.0001	Kit di reagenti	120
	Fosfati (ortofosfati), kit in cuvetta	$0.05 - 5.0 \text{ mg/L PO}_4\text{-P}$ $0.2 - 15.3 \text{ mg/L PO}_4$ $0.11 - 11.46 \text{ mg/L P}_2\text{O}_5$	25	1.00474.0001	Kit in cuvetta	70
	Fosfati (ortofosfati e fosforo totale), kit in cuvetta	0,05 – 5,00 mg/L PO ₄ -P 0,2 – 15,3 mg/L PO ₄ 0,11 – 11,46 mg/L P ₂ O ₅	25	1.14543.0001	Kit in cuvetta	70
	Fosfati, kit per acque dolci e di mare	0,25 – 3 mg/L PO ₄	100	1.14661.0001	Scheda cromatica	132
	Fosfati, kit	0,6 - 9,2 mg/L PO ₄	200	1.14846.0001	Disco cromatico	132
	Fosfati, kit	1,3 - 13,4 mg/L PO ₄	200	1.11138.0001	Recipiente di comparazione	132
	Fosfati (ortofosfati), kit in cuvetta	0,5 - 25,0 mg/L PO ₄ -P 1,5 - 76,7 mg/L PO ₄ 1,1 - 57,3 mg/L P ₂ O ₅	25	1.00475.0001	Kit in cuvetta	70
	Fosfati (ortofosfati e fosforo totale), kit in cuvetta	0,5 - 25,0 mg/L PO ₄ -P 1,5 - 76,7 mg/L PO ₄ 1,1 - 57,3 mg/L P ₂ O ₅	25	1.14729.0001	Kit in cuvetta	70

Parametri F-M

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
F	Fosfati (ortofosfati), kit in cuvetta	0,5 - 25,0 mg/L PO ₄ .P 1,5 - 76,7 mg/L PO ₄ 1,1 - 57,3 mg/L P ₂ O ₅	25	1.14546.0001	Kit in cuvetta	70
	Fosfati (ortofosfati), kit	0,5 - 30,0 mg/L PO ₄ -P 1,5 - 92,0 mg/L PO ₄ 1,1 - 68,7 mg/L P ₂ O ₅	400	1.14842.0001	Kit di reagenti	70
	Fosfati (ortofosfati), kit	1,0 – 100,0 mg/L PO ₄ -P 3 – 307 mg/L PO ₄ 2 – 229 mg/L P ₂ O ₅	100	1.00798.0001	Kit di reagenti	70
	Fosfati, kit	3,1 - 123 mg/L PO ₄	190	1.14449.0001	Scheda cromatica	132
	Fosfati, kit	4,6 - 307 mg/L PO ₄	300	1.18388.0001	Disco cromatico	132
	Fosfati, kit	5 – 120 mg/L PO ₄	50	1.16978.0001	Strisce reattive	120
	Fosfati (ortofosfati), kit in cuvetta	3,0 – 100,0 mg/L PO_4 -P 9 – 307 mg/L PO_4 7 – 229 mg/L P_2O_5	25	1.00616.0001	Kit in cuvetta	70
	Fosfati (ortofosfati e fosforo totale), kit in cuvetta	3,0 - 100 mg/L PO_4 -P 9 - 307 mg/L PO_4 7 - 229 mg/L P_2O_5	25	1.00673.0001	Kit in cuvetta	70
	Fosfati, kit	10 – 500 mg/L PO ₄	100	1.10428.0001	Strisce reattive	144
G	Glucosio, kit	1 – 100 mg/L glucosio	50	1.16720.0001	Strisce reattive	120
	Glucosio, kit	10 - 500 mg/L glucosio	50	1.17866.0001	Strisce reattive	144
I	Idrazina, kit	0,005 – 2,00 mg/L N ₂ H ₄	100	1.09711.0001	Kit di reagenti	70
	Idrazina, kit	0,1 - 1 mg/L N ₂ H ₄	100	1.08017.0001	Recipiente di comparazione	132
	Idrochinone	vedere Sequestranti dell'ossigeno			Kit di reagenti	74
	Idrossimetilfurfurale, kit	1,0 - 60,0 mg/L HMF	50	1.17952.0001	Strisce reattive	120
	Iodio, kit	0,050 - 10,00 mg/L I ₂	200	1.00606.0001	Kit di reagenti	70
L	Laboratorio compatto per l'analisi dell'	acqua		1.11151.0001	Laboratorio compatto	137
M	Magnesio, kit in cuvetta	5,0 – 75,0 mg/L Mg	25	1.00815.0001	Kit in cuvetta	70
	Magnesio, kit	5 – 100 mg/L Mg	50	1.16124.0001	Strisce reattive	120
	Magnesio, kit	100 - 1.500 mg/L Mg	50	1.11131.0001	Scheda cromatica	132
	Manganese, kit	0,005 – 2,00 mg/L Mn	250	1.01846.0001	Kit di reagenti	70
	Manganese, kit	0,010 - 10,0 mg/L Mn	250	1.14770.0002	Kit di reagenti	70
			500	1.14770.0001		
	Manganese, kit	0,03 – 0,5 mg/L Mn	120	1.14406.0001	Scheda cromatica	132
	Manganese, kit in cuvetta	0,10 – 5,00 mg/L Mn	25	1.00816.0001	Kit in cuvetta	70
	Manganese, kit	0,3 – 10 mg/L Mn	120	1.14768.0001	Disco cromatico	132
	Manganese, kit	2 – 100 mg/L Mn	100	1.10080.0001	Strisce reattive	144
	Mercurio	0,025 – 1,000 mg/L Hg			Applicazione	70
	Metiletilchetossima (2-butanone ossima)	vedere Sequestranti dell'ossigeno			Kit di reagenti	74
	Misurazione del colore ADMI				Applicazione	72
	Molibdeno, kit in cuvetta	0,02 – 1,00 mg/L Mo 0,03 – 1,67 mg/L MoO ₄ ²⁺ 0,04 – 2,15 mg/L Na ₂ MoO ₄	25	1.00860.0001	Kit in cuvetta	72
	Molibdeno, kit	5 – 250 mg/L Mo	100	1.10049.0001	Strisce reattive	144
	Monoclorammina, kit	0,050 - 10,00 mg/L Cl ₂ 0,036 - 7,26 mg/L NH ₂ Cl 0,010 - 1,98 mg/L NH ₂ Cl-N	150	1.01632.0001	Kit di reagenti	72
						15

Parametri N

Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
Nichel nei bagni di galvanici	2,0 - 120 g/L Ni			Applicazione	72
Nichel, kit	0,02 - 0,5 mg/L Ni	125	1.14420.0001	Scheda cromatica	132
Nichel, kit	0,02 – 5,00 mg/L Ni	250	1.14785.0001	Kit di reagenti	72
Nichel, kit in cuvetta	0,10 - 6,00 mg/L Ni	25	1.14554.0001	Kit in cuvetta	72
Nichel, kit	0,5 - 10 mg/L Ni	500	1.14783.0001	Disco cromatico	132
Nichel, kit	10 – 500 mg/L Ni	100	1.10006.0001	Strisce reattive	144
Nitrati (UV)	0,0 - 7,0 mg/L			Applicazione	72
Nitrati, kit	0,10 - 25,0 mg/L NO ₃ -N	100	1.09713.0001	Kit di reagenti	72
	0,4 - 110,7 mg/L NO ₃	250	1.09713.0002		
Nitrati, kit	0,2 - 20,0 mg/L NO ₃ -N	100	1.14773.0001	Kit di reagenti	72
	0,9 - 88,5 mg/L NO ₃				
Nitrati, kit	0,3 - 30,0 mg/L	100	1.01842.0001	Kit di reagenti	72
	1,3 - 132,8 mg/L				
Nitrati, kit in cuvetta	0,5 - 18,0 mg/L NO ₃ -N	25	1.14542.0001	Kit in cuvetta	72
	2,2 - 79,7 mg/L NO ₃				
Nitrati, kit in cuvetta	0,5 - 25,0 mg/L NO ₃ -N	25	1.14563.0001	Kit in cuvetta	72
	2,2 - 110,7 mg/L NO ₃				
Nitrati, kit	3 – 90 mg/L NO ₃	50	1.16995.0001	Strisce reattive	120
Nitrati, kit in cuvetta	1,0 - 50,0 mg/L NO ₃ -N	25	1.14764.0001	Kit in cuvetta	72
	4 – 221 mg/L NO ₃				
Nitrati, kit	5 – 90 mg/L NO ₃	90	1.18387.0001	Disco cromatico	132
Nitrati, kit	5 – 225 mg/L NO ₃	50	1.16971.0001	Strisce reattive	120
Nitrati, kit RQeasy®	5 – 250 mg/L NO ₃	50	1.17961.0001	Strisce reattive	120
Nitrati, kit	10 - 150 mg/L NO ₃	200	1.11170.0001	Comparatore scorrevole	132
Nitrati, kit	10 – 500 mg/L NO ₃	25	1.10020.0002	Strisce reattive	144
	5, 23	100	1.10020.0001		
Nitrati, kit	10 - 500 mg/L NO ₃	1.000	1.10092.0021	Confezionate	146
,	3, 3			singolarmente	
Nitrati, kit in cuvetta	23 - 225 mg/L NO ₃ -N	25	1.00614.0001	Kit in cuvetta	72
	102 – 996 mg/L NO ₃				
Nitrati, kit in cuvetta per acque di	0,10 - 3,00 mg/L NO ₃ -N	25	1.14556.0001	Kit in cuvetta	72
mare	0,4 - 13,3 mg/L NO ₃				
Nitrati, kit per acque di mare	0,2 – 17,0 mg/L NO ₃ -N	50	1.14942.0001	Kit di reagenti	72
	0,9 – 75,3 mg/L NO ₃				
Nitrati, kit per acque dolci	10 – 150 mg/L NO ₃	100	1.11169.0001	Scheda cromatica	132
Nitriti, kit	0,005 - 0,1 mg/L NO ₂	110	1.14408.0001	Scheda cromatica	132
Nitriti, kit	0,002 – 1,00 mg/L NO ₂ -N	335	1.14776.0002	Kit di reagenti	72
•	0,007 - 3,28 mg/L NO ₃	1.000	1.14776.0001		
Nitriti, kit	0,025 - 0,5 mg/L NO ₂	200	1.08025.0001	Comparatore scorrevole	132
Nitriti, kit in cuvetta	0,010 - 0,700 mg/L NO ₂ -N	25	1.14547.0001	Kit in cuvetta	72
	0,03 – 2,30 mg/L NO ₂				
Nitriti, kit	0,03 - 1,00 g/L NO ₂	50	1.16732.0001	Strisce reattive	120
Nitriti, kit	0,1 - 3 g/L NO ₂	100	1.10022.0001	Strisce reattive	146
Nitriti, kit	0,1 - 2 mg/L NO ₂	400	1.14424.0001	Scheda cromatica	134
Nitriti, kit	0,1 - 10 mg/L NO ₂	400	1.14774.0001		134
Nitriti, kit	0,5 - 10 mg/L NO ₂	75		Strisce reattive	146
	· = 2				120
Nitriti, kit	0,5 - 25,0 mg/L NO ₂	50		Strisce reattive	
Nitriti, kit	2 – 80 mg/L NO ₂	25	1.10007.0002		146
		100	1.10007.0001		

Parametri N-P

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
N	Nitriti, kit in cuvetta	1,0 - 90,0 mg/L NO ₂ -N	25	1.00609.0001	Kit in cuvetta	72
		3,3 – 295,2 mg/L NO ₂				
	Nitriti, kit per acque dolci e di mare	0,05 - 1,0 mg/L NO ₂	100	1.14658.0001	Scheda cromatica	132
	Numero del colore secondo Hazen (Pt/Co, APHA, Hazen)	0 - 1.000 Pt/Co o Cu			Metodo fisico	72
	Numero di colore (iodio)	0,010 - 50,0 IFZ			Metodo fisico	72
0	Oro, kit	0,5 - 12,0 mg/L Au	75	1.14821.0002	Kit di reagenti	74
	Ossigeno, kit	$0,1 - 10 \text{ mg/L O}_2$	100	1.11107.0001	Titolazione con pipetta	134
	Ossigeno, kit in cuvetta	$0.5 - 12 \text{ mg/L O}_2$	25	1.14694.0001	Kit in cuvetta	74
	Ossigeno, kit per acque dolci e di mare	1 – 12 mg/L O ₂	50	1.14662.0001	Scheda cromatica	134
	Oxifrit-Test®		60	1.10653.0001	Kit per grassi per frit- tura ad immersione	136
	Ozono, kit	0,007 - 0,20 mg/L O ₃	300	1.18755.0001	Scheda cromatica	134
	Ozono, kit	0,010 - 4,00 mg/L O ₃	200	1.00607.0001	Kit di reagenti	74
			1.200	1.00607.0002		
	Ozono, kit	$0,15 - 10 \text{ mg/L O}_3$	300	1.18758.0001	Disco cromatico	134
P	Palladio	0,05 - 1,25 mg/L Pd			Applicazione	72
	Perossidasi, kit	Sì/No	100	1.17828.0001	Strisce reattive	146
	Perossidi	vedere anche Perossido di idrogeno			Kit di reagenti	74
	Perossidi, kit	0,2 - 20,0 mg/L H ₂ O ₂	50	1.16974.0001	Strisce reattive	120
	Perossidi, kit	0,5 – 25 mg/L H ₂ O ₂	25	1.10011.0002		146
			100	1.10011.0001		
	Perossidi, kit	1 – 100 mg/L H ₂ O ₂	100	1.10081.0001	Strisce reattive	146
	Perossidi, kit	20,0 - 100 mg/L H ₂ O ₂	50	1.17968.0001	Strisce reattive	120
	Perossidi, kit	100 – 1.000 mg/L H ₂ O ₂	50	1.16731.0001	Strisce reattive	120
	Perossidi, kit	100 – 1.000 mg/L H ₂ O ₂	100	1.10337.0001	Strisce reattive	146
	Perossido di idrogeno	vedere anche Perossidi			Strisce reattive	120
	Perossido di idrogeno, kit	0,015 - 6,00 mg/L H ₂ O ₂	100	1.18789.0001	Kit di reagenti	74
	Perossido di idrogeno, kit in cuvetta	2,0 – 20,0 mg/L H ₂ O ₂ 0,25 – 5,00 mg/L H ₂ O ₂	25	1.14731.0001	Kit in cuvetta	74
	pH, cartina indicatrice	Vedere elenco delle cartine indicatrici per pH	3 x 4,8 m		Cartina indicatrice per pH	152
	pH, indicatore liquido	pH 9 - 13	100 mL	1.09176.0100	Scheda cromatica	134
	pH, indicatore universale liquido	pH 4 - 10	100 mL	1.09175.0100	Scheda cromatica	134
			1 L	1.09175.1000		
	pH, kit	pH 1,0 - 5,0	50	1.16894.0001	Strisce reattive	120
	pH, kit	pH 4,0 - 9,0	50	1.16996.0001	Strisce reattive	120
	pH, kit	pH 4,5 – 9	100	1.08038.0001	Recipiente di comparazione	134
	pH, kit	pH 4,5 - 9	400	1.08027.0001	Comparatore scor- revole	134
	pH, kit per acque dolci e di mare	pH 5,0 – 9,0	200	1.18773.0001	Scheda cromatica	134
	pH, kit in cuvetta	pH 6,4 - 8,8	280	1.01744.0001	Kit in cuvetta	74
	Ph, kit per piscine	pH 6,5 - 8,2	200	1.14669.0001	Scheda cromatica	134
	pH, kit per lubrificanti per refrigerazione	pH 7,0 – 10,0	50	1.16898.0001	Strisce reattive	120

Parametri P-S

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
P	pH, strisce indicatrici	Vedere elenco delle strisce indicatrici per pH	100		Strisce indicatrici per pH	153
	Piombo, kit	0,010 – 5,00 mg/L Pb	50	1.09717.0001	Kit di reagenti	74
	Piombo, kit in cuvetta	0,10 - 5,00 mg/L Pb	25	1.14833.0001	Kit in cuvetta	74
	Piombo, kit	20 – 500 mg/L Pb	100	1.10077.0001	Strisce reattive	146
	Platino	0,10 - 1,25 mg/L Pt			Applicazione	74
	Platino-cobalto, metodo standard	vedere Colore			Scheda cromatica	130
	Potassio, kit	0,25 - 1,20 g/L K	50	1.16992.0001	Strisce reattive	120
	Potassio, kit	250 – 1.500 mg/L K	100	1.17985.0001	Strisce reattive	146
	Proteine, kit	0,01 - 1,4 g/L proteine	200	1.10306.0500	Kit di reagenti	74
	Potassio, kit RQflex® plus	1,0 - 25,0 mg/L K	100	1.17945.0001	Kit di reagenti	120
	Potassio, kit in cuvetta	5,0 - 50,0 mg/L K	25	1.14562.0001	Kit in cuvetta	74
	Potassio, kit in cuvetta	30 – 300 mg/L K	25	1.00615.0001	Kit in cuvetta	74
	Proteine, kit	0,5 - 10 g/L proteine	250	1.10307.0500	Kit di reagenti	74
R	Rame in bagni galvanici	2,0 - 80,0 g/L Cu			Applicazione	74
	Rame, kit	0,02 - 6,00 mg/L Cu	250	1.14767.0001	Kit di reagenti	74
	Rame, kit	0,05 - 0,5 mg/L Cu	125	1.14414.0001	Scheda cromatica	134
	Rame, kit in cuvetta	0,05 - 8,00 mg/L Cu	25	1.14553.0001	Kit in cuvetta	74
	Rame, kit per acque dolci e di mare	0,15 - 1,6 mg/L Cu	50	1.14651.0001	Scheda cromatica	134
	Rame, kit	0,3 - 5 mg/L Cu	125	1.14418.0001	Scheda cromatica	134
	Rame, kit	0,3 - 10 mg/L Cu	125	1.14765.0001	Disco cromatico	134
	Rame, kit	10 - 300 mg/L Cu	100	1.10003.0001	Strisce reattive	144
S	SAC (coefficiente di assorbimento spettrale)	0,5 - 50,0 m ⁻¹			Metodo fisico	74
	Saccarosio, kit	0,25 - 2,5 g/L	50	1.16141.0001	Strisce reattive	120
	Sequestranti dell'ossigeno, kit	0,020 - 0,500 mg/L DEHA 0,027 - 0,666 mg/L carboidrazide 0,05 - 1,32 mg/L idrochinone 0,08 - 1,95 mg/L ISA 0,09 - 2,17 mg/L MEKO	200	1.19251.0001	Kit di reagenti	74
	Silicati (acido silicico), kit	0,0005 - 0,5000 mg/L SiO ₂ 0,00012 - 0,2337 mg/L Si	100	1.01813.0001	Kit di reagenti	76
	Silicati (acido silicico), kit	0,011 - 10,70 mg/L SiO ₂ 0,005 - 5,00 mg/L Si	300	1.14794.0001	Kit di reagenti	76
	Silicati (acido silicico), kit	0,01 - 0,25 mg/L Si 0,02 - 0,53 mg/L SiO ₂	150	1.14410.0001	Scheda cromatica	134
	Silicati (acido silicico), kit	0,3 – 10 mg/L Si 0,6 – 21 mg/L SiO ₂	150	1.14792.0001	Disco cromatico	134
	Silicati (acido silicico), kit	1,1 - 1.070 mg/L SiO ₂ 0,5 - 500 mg/L Si	100	1.00857.0001	Kit di reagenti	76
	Sodio, kit in cuvetta per soluzioni nutritive per la concimazione	10 – 300 mg/L Na	25	1.00885.0001	Kit in cuvetta	76
	Solfati, kit	0,50 - 50,0 mg/L SO ₄	100	1.01812.0001	Kit di reagenti	76
	Solfati, kit in cuvetta	5 - 250 mg/L SO ₄	25	1.14548.0001	Kit in cuvetta	76
	Solfati, kit in cuvetta	5 - 300 mg/L SO ₄	100	1.02537.0001	Kit in cuvetta	76
	Solfati, kit	25 – 300 mg/L SO ₄	200	1.14791.0001	Kit di reagenti	76
	Solfati, kit	25 - 300 mg/L SO ₄	75	1.18389.0001	Disco cromatico	134
	Solfati, kit	25 - 300 mg/L SO ₄	90	1.14411.0001	Scheda cromatica	134

Parametri S-Z

	Parametro	Intervallo di misura	N° di test	N° Cat.	Sistema/Tipo	Pagina
S	Solfati, kit in cuvetta	50 - 500 mg/L SO ₄	25	1.00617.0001	Kit in cuvetta	76
	Solfati, kit in cuvetta	100 - 1.000 mg/L SO ₄	25	1.14564.0001	Kit in cuvetta	76
	Solfati, kit	200 - 1.600 mg/L SO ₄	100	1.10019.0001	Strisce reattive	146
	Solfiti, kit	0,5 - 50 mg/L Na ₂ SO ₃	200	1.11148.0001	Titolazione con pipetta	134
		(0,3 - 32 mg/L SO ₃)				
	Solfiti, kit in cuvetta	1,0 - 20,0 mg/L SO ₃	25	1.14394.0001	Kit in cuvetta	76
		0,05 - 3,00 mg/L SO ₃				
	Solfiti, kit	1,0 - 60,0 mg/L SO ₃	150	1.01746.0001	Kit di reagenti	76
		0,8 - 48,0 mg/L SO ₂				
	Solfiti, kit	10 – 200 mg/L SO ₃	50	1.16987.0001	Strisce reattive	120
	Solfiti, kit	10 - 400 mg/L SO ₃	100	1.10013.0001	Strisce reattive	146
	Solfuri, kit	0,02 – 0,25 mg/L S ²⁻	100	1.14416.0001	Scheda cromatica	134
	Solfuri, kit	0,020 - 1,50 mg/L S ²⁻	220	1.14779.0001	Kit di reagenti	76
	Solfuri, kit	0,1 - 5 mg/L S ²⁻	200	1.14777.0001	Disco cromatico	134
	Solidi sospesi	25 – 750 mg/L solidi sospesi			Metodo fisico	76
	Stagno, kit	10 – 200 mg/L Sn	50	1.10028.0001	Strisce reattive	146
	Stagno, kit in cuvetta	0,10 - 2,50 mg/L Sn	25			76
Т	Tensioattivi (anionici), kit in cuvetta	0,05 - 2,00 mg/L MBAS	25	1.02552.0001	Kit in cuvetta	76
	Tensioattivi (cationici), kit in cuvetta	0,05 - 1,50 mg/L CTAB	25	1.01764.0001	Kit in cuvetta	76
	Tensioattivi (non ionici), kit in cuvetta	0,10 – 7,50 mg/L Triton® X-100	25	1.01787.0001	Kit in cuvetta	76
	TOC, kit in cuvetta	5,0 - 80,0 mg/L TOC	25	1.14878.0001	Kit in cuvetta	78
	TOC, kit in cuvetta	50 – 800 mg/L TOC	25	1.14879.0001	Kit in cuvetta	78
	Torbidità	1 – 100 FAU			Metodo fisico	78
	Tornasole blu, cartina	pH <7 rosso / >7 blu	3 x 4,8 m	1.09486.0003	Cartina indicatrice	152
		,			per pH	.=-
	Tornasole rosso, cartina	pH <7 rosso / >7 blu	3 x 4,8 m	1.09489.0003	Cartina indicatrice	152
	Tunamianiana	0.0 100.00/ T			per pH	70
	Trasmissione	0,0 - 100,0 % T	100	1 14042 0001	Metodo fisico	78
u	Urea, kit per piscine	0,3 - 8 mg/L Urea	100	1.14843.0001	Disco cromatico	134
	Urea, kit per applicazioni lattiero- casearie	0,2 - 7,0 mg/L NH ₄	50	1.16892.0001	Strisce reattive	120
Z	Zinco, kit in cuvetta	0,025 - 1,000 mg/L Zn	25	1.00861.0001	Kit in cuvetta	78
	Zinco, kit	0,05 - 2,50 mg/L Zn	100	1.14832.0001	Kit di reagenti	78
	Zinco, kit	0,1 - 5 mg/L Zn	120	1.14780.0001	Disco cromatico	134
	Zinco, kit	0,1 - 5 mg/L Zn	120	1.14412.0001	Scheda cromatica	134
	Zinco, kit in cuvetta	0,20 - 5,00 mg/L Zn	25	1.14566.0001	Kit in cuvetta	78
	Zinco, kit	4 – 50 mg/L Zn	100	1.17953.0001	Strisce reattive	146
	Zuccheri totali (glucosio e fruttosio), kit	65 – 650 mg/L zuccheri totali	50	1.16136.0001	Strisce reattive	120

lavoro

Serbatoio dell'acqua

Controllo della Qualità

Preparazione dei campioni

- Crack set
 - > Pagina 51
- Filtri da siringa

- Termoreattori, es. TR 620
 - > Pagina 52

Spettrofotometria

- Spectroquant® Prove 300/600
- > Pagina 36
- Kit analitici Spectroquant®, es. cloruri, silicati, solfati
 - > Pagina 54

- Determinazioni sensibili (cuvette da 100 mm)
- > Pagina 54

Parametri fisici

- Turbidimetro, es. Turbiquant® 3000
 - > Pagina 108
- Strumenti per misure di conducibilità, pH
 - > Pagina 108

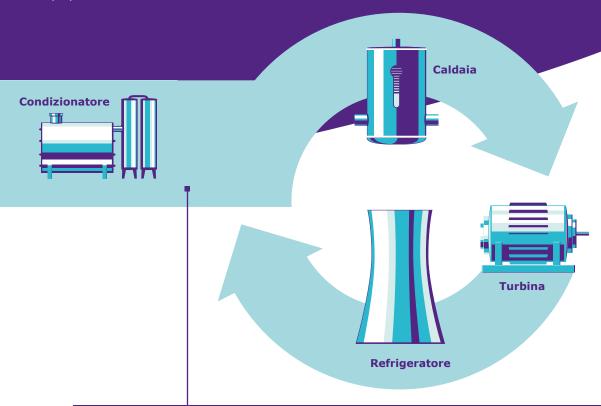
Analisi microbiologiche e ricerca di patogeni

- Unità filtranti per analisi microbiologiche, es. famiglia EZ
 - > Pagina 156
- Terreni di coltura, terreni disidratati e pronti all'uso
 - > Pagina 156

Sistema per la purificazione dell'acqua

- Sistema Milli-Q®
 - > Pagina 163

Materiali di riferimento


- CRM per kit analitici
 - > Pagina 102
- Certipur®
- > Pagina 106
- CombiCheck
- > Pagina 98

Per saperne di più sulle diverse fasi del flusso di lavoro e sui relativi prodotti: www.just-prove-it.com Troverà tutti i prodotti che Le servono presso: www.sigma-aldrich.com

L'analisi delle acque di raffreddamento e riscaldamento è essenziale per le centrali elettriche e per le industrie chimiche, farmaceutiche, tecnologiche o del food and beverage. Il contenuto di silicati, calcio e magnesio è particolarmente importante, perché queste sostanze possono causare la formazione di depositi e di incrostazioni, aumentando i costi di manutenzione e i tempi di fermo macchine.

Lo schema del flusso di lavoro mostra i prodotti che sono necessari per effettuare analisi ultra-sensibili di diversi parametri significativi per le acque di processo. In particolare, l'impiego dello spettrofotometro Spectroquant® Prove 600 con cuvette da 100 mm consente determinazioni ultrasensibili di silicati, cloruri e ferro in modo tale da proteggere il proprio sistema.

Controllo in-process con dispositivi mobili

Analisi semiquantitative

- Cartine e strisce indicatrici per pH > Pagina 148
- Strisce reattive MQuant™, es. cloro
- Kit analitici MColortest[™], es. fosfati, ferro
 - > Pagina 122

> Pagina 138

Analisi quantitative Fotometria

- Colorimetri Move 100 e Move Cl₂/O₂/ClO₂/CyA/pH
- > Pagina 40
- Kit analitici Spectroquant[®], es. per silicati, cloruri, ossigeno, solfati
 - > Pagina 54

- es. HY-LiTE®, HY-RiSE®
 - > Pagina 157

Parametri fisici

- Turbidimetro, es. Turbiquant® 1100
 - > Pagina 108

Materiali di riferimento

- > Pagina 102
- Certipur[®]
 - > Pagina 106

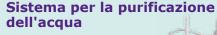
Input In-process Fognature ■ Presedimentazione

Controllo della Qualità

Preparazione dei campioni

- Crack Set e termoreattori, es. TR 420
 - > Pagina 50
- Filtri da siringa
- > Pagina 163
- Turbidimetro, es. Turbiquant® 1500
- > Pagina 108
- Strumenti per misure di conducibilità, pH
- > Pagina 108

Spettrofotometria


- vSpectroquant® Prove 100/300
 - > Pagina 36
- Kit analitici Spectroquant[®], es. per BOD, COD, azoto
 - > Pagina 54

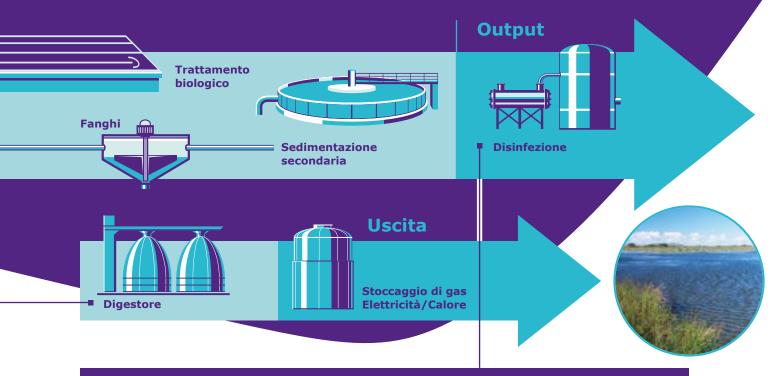
Analisi microbiologiche e ricerca di patogeni

- Unità filtranti per analisi microbiologiche, es. famiglia EZ
 - > Pagina 156
- Terreni di coltura, terreni disidratati e pronti all'uso
 - > Pagina 156

- Sistema Milli-Q®
 - > Pagina 163

Materiali di riferimento

- CRM per kit analitici
 - > Pagina 102
- Certipur®
- > Pagina 106
- CombiCheck
- > Pagina 98



Per saperne di più sulle diverse fasi del flusso di lavoro e sui relativi prodotti: www.just-prove-it.com Troverà tutti i prodotti che le servono presso: www.sigma-aldrich.com

Per proteggere l'ambiente e le comunità, quasi tutte le amministrazioni richiedono il trattamento e l'analisi delle acque reflue municipali (o scarichi civili) e quelle industriali provenienti da stabilimenti chimici, farmaceutici, del food and beverage e da altri impianti produttivi.

Lo schema del flusso di lavoro mostra i prodotti che sono necessari per valutare i parametri chimici essenziali come COD, BOD, TOC, ammonio, nitrati, nitriti, fosforo totale e azoto totale, oltre ad altri parametri importanti come il cromo, altri metalli pesanti e gli acidi organici volatili (VOA).

Controllo in-process con dispositivi mobili

Analisi semiquantitative

- Cartine e strisce indicatrici per pH
 - > Pagina 148
- Strisce reattive MQuant[™], es. per i cloruri
 - > Pagina 138
- Kit analitici MColortest[™], es. fosfati, ferro
 - > Pagina 122

Analisi quantitative Fotometria

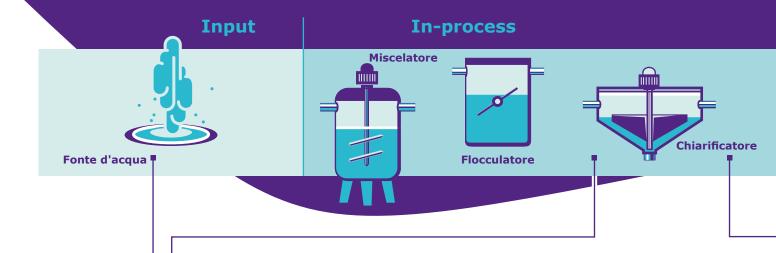
- Colorimetri Move 100 e Move Cl₂/O₃/ClO₂/CyA/
 - > Pagina 40
- Kit analitici Spectroquant®, es. per cloro, fosfati, solfati
 - > Pagina 54

Analisi microbiologiche e ricerca di patogeni

- · Campionatore d'aria, es. famiglia MAS
 - > Pagina 157
- Monitoraggio delle superfici, es. HY-LiTE®, HY-RiSE®
 - > Pagina 157

Parametri fisici

- Turbidimetro, es. Turbiquant® 1100
 - > Pagina 108
- Strumenti per misure di conducibilità, pH
 - > Pagina 108


Materiali di riferimento

- CRM
 - > Pagina 102
- Certipur[®]
- > Pagina 106

ALTRO SULLA PREPARAZIONE DEI CAMPIONI

Controllo della Qualità

Cromatografia

- HPLC, GC, TLC > Pagina 158
- Filtri da siringa
- > Pagina 163

- > Pagina 159

Spettrofotometria

- Spectroquant® Prove 300/600
- > Pagina 36
- Kit analitici Spectroquant®, es. per ammonio, fluoruro, nitrati
 - > Pagina 54
- Determinazioni sensibili (cuvette da 100 mm)
 - > Pagina 54

Parametri fisici

- Turbidimetro, es. Turbiquant® 3000
 - > Pagina 108
- Strumenti per misure di conducibilità, pH
 - > Pagina 108

Analisi microbiologiche e ricerca di patogeni

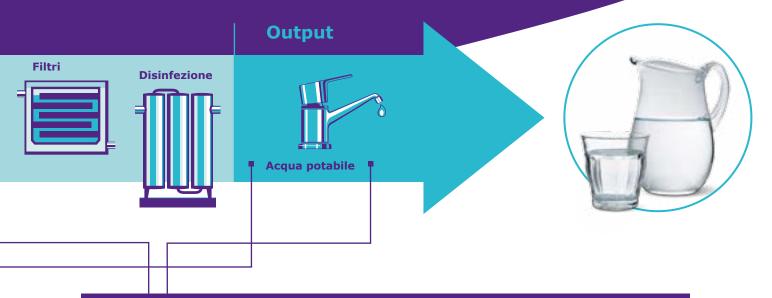
- Unità filtranti per analisi microbiologiche, es. famiglia EZ
 - > Pagina 156
- Terreni di coltura, terreni disidratati e pronti all'uso
 - > Pagina 156

Sistema per la purificazione dell'acqua

- Sistema Milli-Q®
- > Pagina 163

Materiali di riferimento

- CRM per kit analitici
- > Pagina 102
- Certipur®
- > Pagina 106
- Standard per pesticidi
- > Pagina 160



Per saperne di più sulle diverse fasi del flusso di lavoro e sui relativi prodotti: www.just-prove-it.com Troverà tutti i prodotti che le servono presso: www.sigma-aldrich.com

Ogni industria che produce, utilizza o tratta acqua potabile deve soddisfare le norme del proprio paese ed effettuare con regolarità analisi atte a verificare che tale acqua potabile sia esente da contaminazione chimiche e microbiologiche.

Lo schema del flusso di lavoro mostra i prodotti necessari per valutare i parametri chimici rilevanti come alluminio, ammonio, bromati, ferro, manganese, cloruri, nitrati, nitriti, solfati, cromo e altri metalli, o la contaminazione microbiologica.

Controllo in-process con dispositivi mobili

Analisi semiquantitative

- Cartine e strisce indicatrici per pH > Pagina 148
- Strisce reattive MQuant™ es. per acido peracetico
 - > Pagina 138

Analisi quantitative Fotometria

- Colorimetri Move 100 e Move Cl₂/O₃/ClO₂/CyA/
 - > Pagina 40
- Kit analitici Spectroquant®, es. per ozono, cloro
 - > Pagina 54

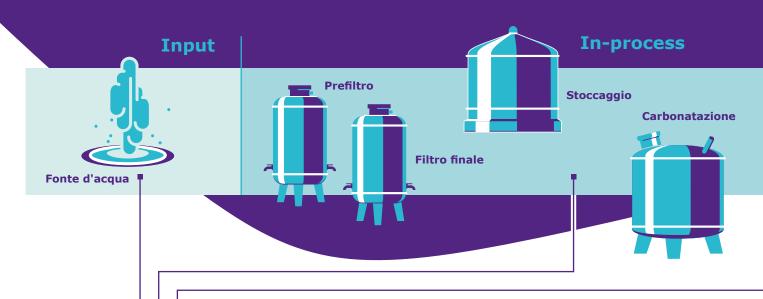
Parametri fisici

- Strumenti per misure di conducibilità, pH
 - > Pagina 108

Analisi microbiologiche e ricerca di patogeni

- Campionatore d'aria, es. famiglia MAS
 - > Pagina 157
- Monitoraggio delle superfici, es. HY-LiTE®, HY-RiSE®
 - > Pagina 157

Materiali di riferimento


- CRM
 - > Pagina 102
- Certipur®
 - > Pagina 106

Flusso di lavoro per acque in bottiglia

Controllo della Qualità

Cromatografia

- HPLC, GC, TLC > Pagina 158
- Filtri da siringa > Pagina 163
- Reagenti inorganici
- > Pagina 158

Spettrofotometria

- Spectroquant® Prove 300/600
- > Pagina 36
- Kit analitici Spectroquant®, es. per calcio, bromati
 - > Pagina 54
- Determinazioni sensibili (cuvette da 100 mm)
 - > Pagina 54

Parametri fisici

- Turbidimetro, es. Turbiquant® 1500
 - > Pagina 108

Analisi microbiologiche e ricerca di patogeni

- Unità filtranti per analisi microbiologiche, es. famiglia EZ
 - > Pagina 156
- Terreni di coltura, terreni disidratati e pronti all'uso
 - > Pagina 156

Sistema per la purificazione dell'acqua

- Sistema Milli-Q®
- > Pagina 163

Materiali di riferimento

- CRM per kit analitici
- > Pagina 102
- Certipur®
- > Pagina 106
- Standard per pesticidi
 - > Pagina 160

Per saperne di più sulle diverse fasi del flusso di lavoro e sui relativi prodotti: www.just-prove-it.com Troverà tutti i prodotti che le servono presso: www.sigma-aldrich.com

Una delle difficoltà principali nel trattamento e nella produzione dell'acqua in bottiglia è quella di mantenere costantemente elevata la qualità del prodotto finito, per proteggere i consumatori e l'ambiente. Per questo è necessario valutare l'efficacia della flocculazione e della filtrazione tramite parametri quali alluminio, ferro, manganese, calcio, fluoruri e durezza totale.

Lo schema del flusso di lavoro mostra i prodotti che servono per le analisi chimiche e microbiologiche dell'acqua in bottiglia, ivi inclusi terreni di coltura, membrane, imbuti e unità filtranti, attrezzatura e accessori.

Output

Controllo del confezionamento

Controllo in-process con dispositivi mobili

Analisi semiquantitative

- Cartine e strisce indicatrici per pH
 Pagina 148
- Strisce reattive MQuant™, es. per cloro, acido peracetico
 - > Pagina 138

Analisi quantitative Fotometria

- Colorimetri Move 100 e Move Cl₂/O₃/ClO₂/CyA/pH
 - > Pagina 40
- Kit analitici Spectroquant[®]
 es. per ozono, cloro
 - > Pagina 54

Strisce reattive

- RQflex® 10
 - > Pagina 114
- Kit analitici Reflectoquant® per i parametri della disinfezione, es. cloro
 - > Pagina 120

Analisi microbiologiche e ricerca di patogeni

- Campionatore d'aria, es. famiglia MAS
 - > Pagina 157
- Monitoraggio delle superfici, es. HY-LiTE®, HY-RiSE®
 - > Pagina 157

Parametri fisici

- Turbidimetro, es. Turbiquant® 1100
- > Pagina 108
- Strumenti per misure di conducibilità, pH
- > Pagina 108

Materiali di riferimento

- CRM
 - > Pagina 102
- Certipur[®]
 - > Pagina 106

Per maggiori informazioni sull'analis dei bromati nelle acque potabili, vedere pagina 32

Analisi microbiologiche

• Terreni di coltura, terreni disidratati

Sistema per la purificazione

• Turbidimetro, es. Turbiquant® 3000

Analisi di ingredienti e nutrizionali

e ricerca di patogeni

• Unità filtranti per analisi microbiologiche,

es. famiglia EZ

> Pagina 156

e pronti all'uso > Pagina 156

dell'acqua

Sistema Milli-Q®Pagina 163

Parametri fisici

> Pagina 108

> Pagina 108

• Aromi e fragranze

• Karl Fischer - reagenti

> Pagina 161

> Pagina 162

• pH-metri

Controllo della Qualità

• Solventi e reagenti inorganici

Cromatografia

• HPLC, GC, TLC > Pagina 158

• Filtri da siringa

> Pagina 163

> Pagina 159

> Pagina 36

> Pagina 46

• CRM per kit analitici

> Pagina 102

> Pagina 106

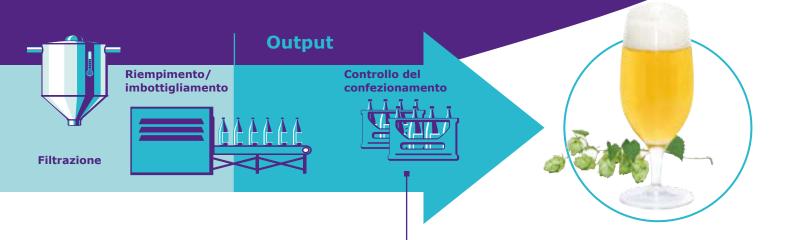
> Pagina 160

• Standard per pesticidi

• Certipur®

Spettrofotometria

• Spectroquant® Prove 300


 Metodi per birrifici conformi agli standard internazionali

Materiali di riferimento

Per saperne di più sulle diverse fasi del flusso di lavoro e sui relativi prodotti: **www.just-prove-it.com**Troverà tutti i prodotti che le servono presso: **www.sigma-aldrich.com**

I birrifici devono monitorare attentamente tutte le fasi produttive, dall'analisi delle materie prime e dell'acqua potabile, ai controlli nel corso del processo e delle procedure di disinfezione, fino ai prodotti finiti e le acque reflue (vedere "Flusso di lavoro per acque reflue" a pagina 22). La qualità e la consistenza della birra vengono valutati attraverso parametri quali amaro, flavonoidi, azoto amminico libero, colore, tenore di calcio e di zinco e contaminazione microbiologica.

Lo schema del flusso di lavoro mostra i prodotti necessari per analisi della birra affidabili. In particolare, gli spettrofotometri Spectroquant® Prove presentano metodi preprogrammati conformi agli standard internazionali che aiutano a monitorare la qualità e la maturazione della birra in modo rapido e accurato.

Controllo in-process

Analisi semiquantitative

- Cartine e strisce indicatrici per pH > Pagina 148
- Strisce reattive MQuant[™] es. per glucosio, calcio
 - > Pagina 138

Analisi quantitative

Strisce reattive

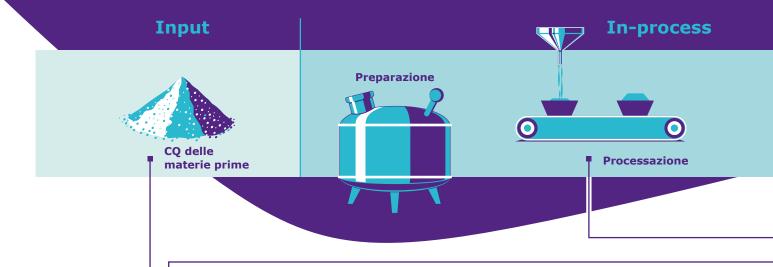
- ROflex® 10
- > Pagina 114
- Kit analitici Reflectoquant® per i parametri della disinfezione, es. cloro
 - > Pagina 120

Fotometria

- Colorimetri Move 100 e Move Cl₂/O₃/ClO₂/CyA/pH
 - > Pagina 40
- Kit analitici Spectroquant®, es. per ferro, solfiti
 - > Pagina 54

Analisi microbiologiche e ricerca di patogeni

- Campionatore d'aria, es. famiglia MAS
 - > Pagina 157
- Monitoraggio delle superfici, es. HY-LiTE®, HY-RiSE®
 - > Pagina 157


Materiali di riferimento

- CRM
 - > Pagina 102
- Certipur®
 - > Pagina 106

Flusso di lavoro nel food and beverage

Controllo della Qualità

Cromatografia

- HPLC, GC, TLC > Pagina 158
- Filtri da siringa
- > Pagina 163

Spettrofotometria

- Spectroquant® Prove 600
 - > Pagina 36
- Kit analitici Spectroquant[®], es. per calcio, nitrati, solfiti
 - > Pagina 54

Materiali di riferimento

Troverà tutti i prodotti che le servono presso: www.sigma-aldrich.com

- CRM per kit analitici
 - > Pagina 102
- Certipur®
 - > Pagina 106
- Standard per pesticidi
 - > Pagina 160

Analisi microbiologiche e ricerca di patogeni

- Unità filtranti per analisi microbiologiche, es. famiglia EZ
 - > Pagina 156
- Terreni di coltura, terreni disidratati e pronti all'uso
 - > Pagina 156

Sistema per la purificazione dell'acqua

- Sistema Milli-Q®
- > Pagina 163

Analisi di ingredienti e nutrizionali

- Kjeldahl, fibra alimentare totale
 - > Pagina 161
- Aromi e fragranze
 - > Pagina 161
- Karl Fischer reagenti
- > Pagina 162

Produttori di alimenti e bevande devono fare i conti con un numero sempre maggiore di normative sulla sicurezza e sono tenuti a condurre analisi dettagliate delle materie prime, controlli in corso di processo, saggi qualitativi e sorveglianza igienica. Poiché tutte queste analisi richiedono tempo, i nostri metodi rapidi per la ricerca sul posto di contaminanti chimici e microbiologici sono stati appositamente ideati per aiutarla a raggiungere più velocemente la commercializzazione dei Suoi prodotti.

Lo schema del flusso di lavoro mostra i prodotti che servono per un'analisi accurata dei parametri chimici importanti nell'industria del food and beverage come la concentrazione di acido ascorbico, glucosio e fruttosio, o i contaminanti microbiologici.

Output

CQ del prodotto

Controllo in-process

Analisi semiquantitative

- Cartine e strisce indicatrici per pH > Pagina 148
- Strisce reattive MQuant[™] es. per acidi grassi liberi
 - > Pagina 138

Analisi quantitative

Strisce reattive

• ROflex® 10 > Pagina 114

- Kit analitici Reflectoquant® es. per HMF, glucosio, saccarosio, acido ascorbico
 - > Pagina 120

Fotometria

- Colorimetri Move 100 e Move Cl₂/O₂/ClO₂/CyA/pH
 - > Pagina 40
- Kit analitici Spectroquant®, es. per ferro, magnesio, solfiti > Pagina 54

Analisi microbiologiche e ricerca di patogeni

> Pagina 157

- · Monitoraggio delle superfici, es. HY-LiTE®, HY-RiSE®
 - > Pagina 157

Materiali di riferimento

- CRM
 - > Pagina 102
- Certipur®
 - > Pagina 106

10TORE DI RICERCA PER BOLLETTINI ANALITICI

Analisi dei bromati semplici ed economiche

L'applicazione

- I bromati si formano durante la sterilizzazione, quando dell'acqua ricca di bromuri viene trattata con ozono
- Essendo i bromati tossici e cancerogeni, la loro ricerca nell'acqua potabile è essenziale
- Limite secondo le linee quida dell'OMS: 10 μg/L BrO₃-

La nostra soluzione: Spectroquant® Prove 600

Spectroquant® Prove 600 offre un metodo fotometrico estremamente sensibile per l'analisi dei bromati. In combinazione con una cuvetta da 100 mm, consente di rilevare in modo semplice e accurato livelli di bromati molto ridotti e di determinare se essi sono inferiori ai limiti stabiliti, senza necessità di investimenti significativi.

Vantaggi

- Soluzione semplice, accurata ed economica
- Metodo per l'analisi dei bromati conforme allo standard ISO 15061:2001
- Intervallo di misura estremamente sensibile: 0,5-20 μg/L BrO₃⁻ per i campioni portati a secco, 2,5-100 μg/L BrO₃⁻ senza evaporazione

Per saperne di più su analisi dei bromati senza problemi:

www.merckmillipore.com/bromate

Fotometria

Spectroquant®

Informazioni generali	34
Strumenti Spettrofotometri Prove Colorimetri Move Colorimetro Multy Fotometri NOVA Accessori Applicazioni speciali	35 36 40 42 43 44 46
Preparazione dei campioni	50
Crack Set	51
Termoreattori	52
Kit analitici Approvati dall'USEPA Linee guida per le acque potabili Elenco dei prodotti Kit analitici per fotometri di altre case Kit analitici per campioni con un elevato tenore salino	54 56 57 58 80 82
Assicurazione della qualità	88
CombiCheck	98
Materiali di riferimento certificati	102
Soluzioni standard	106

Il concetto Spectroquant®

Un sistema completo per analisi fotometriche

Analisi assicurate

Se desidera essere certo delle Sue determinazioni, l'Assicurazione della Qualità Analitica (AQA) che consente di dimostrare la validità e la riproducibilità dei Suoi risultati fotometrici, per Lei è necessaria. Con il concetto Spectroquant[®], può concentrarsi sul Suo lavoro quotidiano, senza doversi preoccupare della qualità dei Suoi risultati. La nostra soluzione, comoda e completa, include tutti gli elementi necessari per analisi sicure, ciascuno dei quali coopera in stretta unione con gli altri: strumenti affidabili, kit analitici di elevata qualità, applicazioni personalizzate e AQA dall'inizio alla fine.

Guardi come i nostri prodotti coadiuvano i Suoi flussi di lavoro alle pagine 20-31.

Sistema Spectroquant®

Strumenti e accessori Fotometri e colorimetri Spectroquant® combinano elevata qualità delle determinazioni e facilità d'impiego: Spectroquant® Prove | Spectroquant® Move | Spectroquant® Multy | Spectroquant® NOVA

Preparazione dei campioni Davvero comoda ed efficace con i crack set e i termoreattori: Crack set Spectroquant® Termoreattori TR 320 / 420 / 620 Spectroguant®

Kit analitici Più di 200 kit analitici Spectroquant® offrono soluzioni competenti per la più ampia gamma di applicazioni che si possa immaginare: Kit di reagenti | Kit in cuvetta | Kit per campioni contenenti sale | Kit per fotometri di altre case

Certificati di Qualità I Certificati di Qualità di ogni kit analitico confermano una qualità costante tra lotto e lotto

Assicurazione della Qualità Una perfetta Assicurazione della Qualità Analitica (AQA) grazie a standard certificati, documentazione conforme alle GLP e strumenti: PhotoCheck Spectroquant® | Standard UV/VIS Certipur® | PipeCheck Spectroquant® | CombiCheck Spectroquant® | Soluzioni standard (CRM) per applicazioni fotometriche | Soluzioni standard Certipur®

Non sa qual è il fotometro ideale per il Suo lavoro di tutti i giorni? Lo scopra nella nostra guida alla scelta del fotometro!

www.merckmillipore.com/photometer-selection-guide

S

disinfezione

parametri

C

Move Cl₂/O₃/ClO₂/CyA/pH

Colorimetri	Cettings of the state of the st
Strumenti Spectroquant®	diparations of the street of t

5

>130

Move 100	Strumento ideale per l'analisi sul campo delle acque reflue e delle acque potabili		>100		•	
Spectroquant® Multy – Colorimetro mobile ricaricabile per le analisi di routine						
Multy	Compatto e portatile per misurazioni di routine di diversi		>130			

Colorimetro ideale per il controllo delle procedure di

Fotometri

Multy

Spectroquant® NOVA – Fotometri a filtro comodi e compatti, per determinazioni affidabili							
NOVA 30 A	Strumento essenziale per le analisi di routine delle acque reflue	•	>60	•	•		
NOVA 60	Analisi di routine di tutti i tipi di acqua		>180	•			
NOVA 60 A	Come il NOVA 60, ma può funzionare anche con una batteria ricaricabile	•	>180	•	•		

Spectroquant® Prove –	Sofisticati fotometri con schermo tattile per analisi sen	sibili e	sicure	
Prove 100	La scelta migliore per l'impiego dell'ampia gamma di kit analitici Spectroquant® o per sole determinazioni nel campo del visibile	•	>200	
Prove 300	Dotato di lampada allo xeno di lunga durata per un impiego più intensivo e capace di determinazioni nell'UV e nel visibile per una maggiore versatilità nel caso di analisi complesse	•	>200	
Prove 600	Ideato per ottiche UV/Vis di alta qualità e cuvette fino a 100 mm, offre anche risoluzione e sensibilità eccellenti con i kit analitici, gli studi cinetici complessi e la misura degli spettri.	•	>200	

Spettrofotometri Spectroquant® Prove

Analisi sofisticate in tutta semplicità

Il nostro obiettivo era quello di realizzare lo strumento perfetto per le analisi delle acque. Quello che unisce la semplicità desiderata con la sicurezza richiesta e la lunga durata che ci si aspetta. Spectroquant® Prove non si limita a fornire tutto ciò. Offrendo sistemi di controllo intuitivi ed essendo preprogrammato per oltre 200 kit analitici e metodi Spectroquant®, rende le analisi più semplici che mai.

Lampada di lunga durata con tecnologia del raggio di ____ riferimento, per una robustezza e un risparmio eccezionali

Innovativa tecnologia della determinazione alla luce ambientale, in attesa di brevetto

Touchscreen "Smart", per una navigazione semplice in 28 lingue

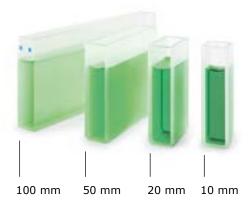
Personalizzi le impostazioni, imposti la correzione della torbidità, aggiunga fattori di diluizione o visualizzi simultaneamente assorbimentoa e concentrazione.

Stabilisca intervalli di misura personalizzati per monitorare se i risultati cadono all'interno dei limiti

Usi la porta USB o la porta Ethernet per collegare una stampante o una LIMS e trasferire i dati rapidamente

Materiali e design sono stati ideati per durare e per tollerare la maggior parte dei reagenti chimici usati in laboratorio

Un gioiellino nel Suo laboratorio: 42 cm x 28 cm x 24 cm


Codici a barre Live ID sui kit in cuvetta e di reagenti trasferiscono automaticamente allo spettrofotometro le informazioni rilevanti:

- riconoscimento del metodo
- numero di lotto
- data di scadenza
- aggiornamento della calibrazione

I kit di reagenti comprendono un AutoSelector per l'identificazione del kit e il calcolo del risultato in modalità automatica Le cuvette dei kit contengono praticamente tutti i reagenti necessari per le analisi.

Tutti i modelli Prove funzionano con le cuvette da 10, 20 e 50 mm

Per una sensibilità ancora maggiore, lo spettrofotometro Prove 600 è compatibile anche con il formato da 100 mm.

L'apertura per i kit in cuvetta consente l'introduzione diretta delle cuvette circolari

Il supporto per le cuvette è rimovibile, a vantaggio della facilità di pulizia in caso di spargimento accidentale

scelga il suo kit

Scelga tra i comodi kit in cuvetta o gli economici kit di reagenti > Maggiori informazioni a pagina 55

Spettrofotometri Spectroquant® Prove

Tre modelli perfetti. A Lei la scelta.

Spectroquant® Prove 100 N° Cat. 1.73016.0001

Per applicazioni di routine

Prove 100 è la scelta migliore per coloro che utilizzano prevalentemente la nostra ampia gamma di kit analitici Spectroquant® o che eseguono determinazioni nel solo campo del visibile. Qualità elevata e ottimo rapporto qualità-prezzo per le Sue analisi di tutti i giorni.

300

Spectroquant® Prove 300 N° Cat. 1.73017.0001

Per determinazioni sensibili

Grazie alla sua lampada allo xeno di lunga durata, Prove 300 è ideale per un impiego più intensivo. Inoltre, è capace di determinazioni sia nell'UV che nel visibile, consentendo una maggiore versatilità per le analisi più complesse.

600

Spectroquant® Prove 600 N° Cat. 1.73018.0001

Per analisi complesse

Ideato per ottiche UV/Vis di alta qualità e cuvette fino a 100 mm, il modello Prove 600 concentra una grande potenza in un formato compatto. Risoluzione e sensibilità eccellenti con i kit analitici, gli studi cinetici complessi e la misura degli spettri.

		Q"	Q	Q
Specifiche				
Tecnologia di misurazione	Spettrofotometro con tecnologia del raggio di riferimento			
Intervallo di lunghezze d'onda	Vis (320 – 1.100 nm)			
	UV (190 – 320 nm)			
Tipo di lampada	Alogena al tungsteno			
	Flash allo xeno			
Protezione dalla luce ambientale	Misurazioni con alloggiamento aperto possibili grazie ad una soluzione esclusiva (in attesa di brevetto)			
Ampiezza di banda dello spettro	4 nm			
	1,8 nm			
Schermo "smart screen"	Touch screen resistivo			
	Touch screen P-cap in vetro			
Sistema Live ID	Riconoscimento di codici a barre 2-D per i kit in cuvetta e di reagenti			
	Il codice a barre contiene informazioni su lotto, scadenza e calibrazione che vengono associate ad ogni determinazione			
Dimensioni delle cuvette	Cuvette circolari da 16 mm, cuvette rettangolari da 10, 20 e 50 con riconoscimento automatizzato			
	Cuvette rettangolari da 100 mm con riconoscimento automatizzato			
Supporto delle cuvette	Rimovibile per una maggiore comodità di pulizia			
Metodi	Metodi programmati per tutti i kit Spectroquant® (di reagenti e in cuvetta), 99 metodi definiti dall'utente, 20 profili ciascuno per cinetiche e scansioni di assorbanza			
Applicazioni	Applicazioni preprogrammate gratuite: bromati, pacchetti per birrifici (metodi MEBAK/EBC/ASBC), zucchero (ICUMSA), olio (DOBI, olio d'oliva)			
AQA Prime	Impostazioni specifiche per tutti i metodi in modalità AQA 1 (esame dello strumento) e AQA 2 (esame del sistema) e per l'esame della pipetta			
Controllo della matrice del campione	Semplice accesso, attraverso il menù delle impostazioni, al controllo della matrice con l'ausilio dello strumento per ciascun metodo			
Aggiornamenti software	Aggiornamenti gratuiti dei metodi nel nostro sito web			
Lingue	Navigazione possibile in 28 lingue precaricate			
Interfacce di comunicazione	USB: 2 x USB-A (per stampante, chiavette USB, tastiera o lettore di codice a barre), 1 x USB-B; Ethernet: connessione LAN			

Acque reflue

Per le acqua reflue, solitamente si eseguono analisi ad intervalli regolari con l'impiego dei kit in cuvetta. Per gueste determinazioni, lo strumento Prove 100 è la scelta perfetta. Il portafoglio Spectroquant® offre la più ampia scelta di kit per analisi del COD. Semplicemente scegliendo l'intervallo di misura più adatto per le Sue esigenze potrà godere di risultati precisi.

Flusso di lavoro per acque reflue > Pagina 22

Acque potabili e bevande

Per l'analisi di acque potabili e bevande solitamente si utilizzano i kit di reagenti che offrono limiti di rilevazione inferiori per parametri quali manganese e solfati. Lo spettrofotometro Prove 300 è in questo caso ideale, perché consente analisi UV/Vis ed è programmato con applicazioni gratuite come quella dei bromati e i saggi per i birrifici.

Flusso di lavoro per acque potabili > Pagina 24

Acque di processo

Nelle acque di processo, anche livelli ridotti di impurezze possono causare danni, fermi macchine e riparazioni costose. Per contribuire ad evitarli, offriamo i kit per i silicati ed i cloruri più sensibili sul mercato, con gli intervalli di misura più bassi disponibili. Per una sensibilità ancora maggiore, si possono utilizzare le cuvette da 100 mm con lo strumento Prove 600.

Flusso di lavoro per acque di riscaldamento e raffreddamento > Pagina 20

Basta chiedere.

Manutenzione e assistenza

Conosciamo l'importanza di strumenti affidabili e la complessità della documentazione. Ecco perché offriamo un completo programma di manutenzione che si prende cura di entrambi.

Tutti i programmi di manutenzione Spectroquant® offrono i sequenti vantaggi:

- esame delle prestazioni con materiali di riferimento; certificato allegato
- manutenzione suggerita dal produttore, per prevenire i guasti
- una linea telefonica diretta per l'assistenza facilita la comunicazione con i nostri esperti tecnici
- aggiornamenti software gratuiti, perché lo strumento sia sempre aggiornato
- programma di consegna dei reagenti, per una puntuale e comoda fornitura dei nostri kit analitici di elevata qualità

Ci contatti oggi stesso per il Suo programma di manutenzione Spectroquant® personalizzato: www.merckmillipore.com/water-analytics-service

visiti www.sigma-aldrich.com

Colorimetri Spectroquant® Move

Risultati rapidi e affidabili "in situ"

Spectroquant® Move 100 È il laboratorio che raggiunge i campioni

Lo strumento **Spectroquant® Move 100** è stato realizzato per analisi dell'acqua "in situ" rapide e affidabili. Nessun ritardo, nessun rischio di deterioramento dei campioni e nessuno strumento aggiuntivo. Questo compatto colorimetro portatile consente da solo di determinare tutti i parametri importanti per l'analisi delle acque potabili e delle acque reflue.

- Pre-programmato per oltre 100 parametri
- Ampia scelta di intervalli di misura per risultati accurati
- Ermetico alla polvere e all'acqua in conformità alla classe di protezione IP 68
- Risultati sicuri con procedure AQA semplificate e documentazione perfezionata

Spectroquant[®] Move Cl₂/O₃/ClO₂/CyA/pH Semplifichi i controlli delle procedure di disinfezione

Lo strumento Spectroquant® Move Cl₂/O₃/ClO₂/CyA/pH è stato ideato per semplificare il controllo delle procedure di disinfezione nelle analisi sul campo e nel monitoraggio del processo. Questo piccolo dispositivo è preprogrammato per i cinque parametri essenziali per il controllo delle procedure di disinfezione (cloro, ozono, biossido di cloro, acido cianurico e pH) sulla base dei kit analitici Spectroquant®.

- Un solo strumento per tutti i parametri chiave per il controllo delle procedure di disinfezione
- Ermetico alla polvere e all'acqua in conformità alla classe di protezione IP 68
- Preprogrammato per gli eccellenti kit analitici Spectroguant®
- Documentazione esauriente a vantaggio di procedure AQA e audit semplificati

Colorimetri Spectroquant [®] Move	N° Catalogo
Colorimetro Spectroquant® Move 100	1.73632.0001
Colorimetro Spectroquant® Move Cl ₂ /O ₃ /ClO ₂ /CyA/pH	1.73635.0001

Dati tecnici		Move 100	Move Cl ₂ /O ₃ /ClO ₂ /CyA/pH
Compresi nella fornitura	Strumento alloggiato in una leggera valigetta di trasporto, 4 batterie, 3 flaconcini cilindrici da 16 e 24 mm ø, 1 adattatore per flaconcini da 16 mm, cacciavite, certificato di garanzia, certificato di conformità, manuale di istruzioni	•	•
Schermo	Schermo grafico retroilluminato		
	LCD retroilluminato (alla pressione dei tasti)		
Interfacce	Interfaccia IR per il trasferimento dei dati		
	Connettore RJ45 per aggiornamenti via internet		
Ottica	LED, filtro interferenziale, fotosensore, camera di misurazione trasparente		
Lunghezze d'onda	430, 530, 560, 580, 610 e 660 nm		
	530 nm		
Accuratezza delle lunghezze d'onda	± 1 nm		
Accuratezza fotometrica	1,000 Abs ±0,020 Abs 2,600 Abs ± 0,052 Abs (≙ 2% FS) (misurata con soluzioni standard – T = 20-25 °C)	•	
	1,000 ± 0,030 Abs 2,600 Abs ± 0,078 Abs (≘ 3 % FS) 3 % FS (misurata con soluzioni standard – T = 20-25 °C)		
Risoluzione fotometrica	0,005 A		
	0,001 A		
Funzionamento	Tastiera a membrana tattile resistente agli acidi e ai solventi		
Alimentazione	4 batterie (Tipo AA/LR6), durata circa 26 ore di uso continuo o 3.500 test		
	4 batterie (tipo AAA/LR03), durata circa 17 ore di uso continuo o 5.000 test		•
Peso	Circa 450 g		
	Circa 260 g		
Dimensioni	Circa 210 x 95 x 45 mm (strumento) Circa 395 x 295 x 106 mm (valigetta)	•	
	Circa $155 \times 75 \times 35$ mm (strumento) Circa $340 \times 275 \times 83$ mm (valigetta)		
Classificazione IP	Ermetico alla polvere e all'acqua in conformità alla IP 68		
Capacità di memorizzazione	Circa 1.000 serie di dati		
	Memoria interna a nucleo magnetico per 16 serie di dati		
Commenti	Conformità CE		
Accessori	>> Vedere pagina 44 Accessori Spectroquant®		

Colorimetro Spectroquant® Multy

Analisi di routine economiche

Spectroquant® Multy

Cerca un colorimetro completo ma economico per le analisi fotometriche dell'acqua? Il colorimetro Spectroquant® Multy è preprogrammato per più di 130 kit analitici Spectroquant® che coprono tutti i parametri essenziali per l'analisi delle acqua potabili e delle acque reflue.

metodi preprogrammati

per acque potabili e acque reflue

Batterie ricaricabili

per una completa libertà di movimento

Colorimetro Spectroquant® Mu	Ity N° Cat. 1.73630.0001
Compresi nella fornitura	Valigetta, colorimetro, adattatore per cuvette circolari da 16 mm, coperchio per adattatore, 7 batterie ricaricabili, batteria al litio (per garantire la memorizzazione dei dati), cavo di interfaccia per collegamento al PC o alla stampante, 3 cuvette circolari da 16 mm, 3 cuvette circolari da 24 mm, cacciavite (per il compartimento batterie), bicchierino in plastica da 100 ml, manuale d'uso
Schermo	Schermo grafico di ampio formato
Ottica	6 LED compensati in temperatura con filtri interferenziali, canale di riferimento interno (tecnologia a doppio raggio)
Lunghezze d'onda delle misurazioni	430 nm, 530 nm, 560 nm, 580 nm, 610 nm, 660 nm
Interfaccia	RS 232 per collegamento al PC o alla stampante
Metodi	Programmazione di oltre 130 metodi per kit Spectroquant® di reagenti e in cuvetta, misurazioni fisiche e applicazioni preprogrammate
Tastierino	Resistente agli acidi e ai solventi, "touch sensitive" con segnalazione acustica
Alimentazione	7 batterie NiMH (AA/Mignon), caricate all'interno dell'unità con un caricatore integrato, protezione da sovraccarico integrata.
Condizioni ambientali	Umidità massima 90% (non condensante); circa 5 – 40 °C
Controllo del sistema	Autoesame automatizzato dello strumento
Capacità di memorizzazione	Per 1.000 serie di dati, con data, ora e numero di registrazione
Approvazione CE	Sì
Dimensioni	Circa 265 x 195 x 70 mm (unità), 440 x 370 x 140 mm (valigetta)
Accessori	>> Vedere pagina 44 Accessori Spectroquant®

Fotometri Spectroquant® NOVA

Misurazioni comode e accurate

Spectroquant® NOVA

Provi elevata qualità nelle misurazioni con grande semplicità. I fotometri Spectroquant® NOVA concentrano la massima comodità in dimensioni minime.

- Lettura del codice a barre dei kit Spectroquant® per l'autoriconoscimento delle dimensioni della cuvetta, del metodo e per il calcolo dei risultati
- Compatti e mobili possono essere facilmente trasportati da un laboratorio all'altro
- Una gran varietà di parametri e di intervalli di misura per risultati accurati
- AQA con l'ausilio dello strumento

Fotometri Spectroquant® NOVA		N° Catalogo			
Spectroquant® NOVA 30 A		1.0974	8.000:	1	
Spectroquant® NOVA 60	oquant® NOVA 60		1.09751.0001		
Spectroquant® NOVA 60 A		1.0975	2.000	1	
Dati tecnici		NOVA 30 A	60	60 A	
Lunghezze d'onda	6 filtri con tecnica array con raggio di riferimento: 340, 445, 525, 550, 605, 690 nm,				

Dati tecinci		30 A	60	60 A
Lunghezze d'onda	6 filtri con tecnica array con raggio di riferimento: 340, 445, 525, 550, 605, 690 nm, ±2 nm; ampiezza di semibanda 10 nm (30 nm per 340 nm)	•		
	12 filtri con tecnica array con raggio di riferimento: 340, 410, 445, 500, 525, 550, 565, 605, 620, 665, 690, 820 nm, ±2 nm; ampiezza di semibanda 10 nm (30 nm per 340 nm)			
Riproducibilità fotometrica	0,001 A a 1,000 A			
Risoluzione fotometrica	0,001 A			
Tipi di determinazione	Assorbanza, concentrazione, trasmittanza			
Intervallo di misura dell'assorbanza	Da -0,300 A a 3,200 A			
Lampada	Lampada alogena al tungsteno, preregolata, senza tempo di riscaldamento, durata delle misurazioni 2 s	•	•	
Data/ora	Orologio RTC integrato nel fotometro			
Compartimento delle cuvette	Cuvette circolari da 16 mm			
	Cuvette rettangolari da 10, 20 e 50 mm; cuvette circolari da 16 mm			
Riconoscimento del kit	Riconoscimento automatico della cuvetta con la funzione AutoSelect (sistema di lettura dei codici a barre)	•	•	•
Aggiornamento dei metodi	Via internet			
AQA	3 modalità di controllo della qualità			
Correzione della torbidità	Misurazione simultanea a più lunghezze d'onda per la correzione della torbidità			
Interfaccia	Interfaccia seriale RS 232 C per computer e stampante			
Metodi	Programmazione di oltre 60 metodi per kit Spectroquant® in cuvetta, misurazioni fisiche e applicazioni preprogrammate			
	Programmazione di oltre 170 metodi per kit Spectroquant® di reagenti e in cuvetta, misurazioni fisiche e applicazioni preprogrammate		-	•
Capacità di memorizzazione	Fino a 500 risultati			
	Fino a 1.000 risultati			
Alimentazione	100 – 240 V~, 50 – 60 Hz			
Temperatura	Stoccaggio: tra -25 °C e +65 °C, funzionamento: tra +5 °C e +40 °C			
Umidità relativa consentita	Media annuale: ≤75 %, 30 giorni all'anno: 95 %, gli altri giorni: 85 %			
Dimensioni	140 x 270 x 260 mm (A x P x L)			
Peso	2,8 kg compresa la batteria			
	2,3 kg			
Funzioni speciali	50 metodi programmabili gratuiti			
Accessori	>> Vedere pagina 44 Accessori Spectroquant®			
				43

Accessori Spectroquant®

Analisi di routine economiche

Cuvette per strumenti Spectroquant®

Prodotto	Prove 100	Prove 300	Prove 600	NOVA	Multy	Move	N° Catalogo
Cuvette circolari da 16 mm vuote con tappo a vite							1.14724.0001
Cuvette circolari da 24 mm vuote con tappo a vite							1.73650.0001
Cuvette rettangolari da 10 mm							1.14946.0001
Cuvette rettangolari da 20 mm							1.14947.0001
Cuvette rettangolari da 50 mm							1.14944.0001
Cuvette rettangolari da 100 mm							1.74011.0001
Cuvette rettangolari in quarzo da 10 mm							1.00784.0001
Cuvette semi-micro da 50 mm							1.73502.0001

Accessori per strumenti Spectroquant®

N° Cat. per Prove	N° Cat. per NOVA	N° Cat. per Move		
1.73020.0001	1.09769.0001	Inclusa		
1.74010.0001 (per Prove 100)	1.09749.0001			
1.74064.0001	1.09734.0001 1.09779.0001 (adattatore EU) 1.20097.0001 (adattatore USA) 1.20347.0001 (adattatore UK) 1.20497.0001 (adattatore AUS)	4 batterie incluse		
ento	1.00787.0001 (per cuvette da 10 mm)			
Non servono accessori	1.14964.0001 (software per PC)	1.73633.0001 (unità, cavo e software)		
	1.14667.0001 (per bus seriale)	1.73634.0001 (per aggiornamenti)		
	1.73020.0001 1.74010.0001 (per Prove 100) 1.74064.0001	1.73020.0001		

Litenga Duliti

Pulizia affidabile e senza residui con Extran®

La pulizia di strumenti e laboratorio è essenziale per determinazioni accurate. Extran® è un detergente affidabile e che non lascia residui, di composizione costante, così che non dovrà modificare frequentemente processo e applicazioni.

Pulizia in tutta semplicità

- Lavare abbondantemente l'attrezzatura di laboratorio con acqua, quindi sciacquare con acqua distillata
- Eliminare eventuali macchie o segni rimasti sulle superfici con un panno asciutto
- Rimuovere eventuali tracce di grasso immergendo il recipiente in Extran®al 2-5%, quindi sciacquare con acqua distillata

Detergenti per cuvette e recipienti di vetro

Extran® MA 02

N° Cat. 1.07553.2500

Neutro, contiene fosfati pH delle soluzioni al 2–5 % circa 7,2–7,5

Extran® MA 05

N° Cat. 1.40000.2500

Alcalino, senza fosfati | Non adatto per i materiali sensibili agli alcali come l'alluminio

pH delle soluzioni al 2–5 % circa 11,6 –12,0 $\,$

convalida delle procedure di pulizia

Il kit in cuvetta Spectroquant® per i tensioattivi non ionici (pagina 76) consente un'efficace convalida delle procedure igieniche.

Abbastanza pulito per la determinazione del cloro?

Perché per la determinazione del cloro è così importante lavare le cuvette con acido solforico al 25%?

Il reagente 2 del kit per la determinazione del cloro totale contiene ioduro di potassio che ha un'affinità estremamente elevata per le superfici di vetro e che, quindi, non se ne distacca se il lavaggio viene effettuato solo con acqua distillata. I residui di ioduro di potassio determinerebbero letture sovradimensionate per il cloro libero e sottodimensionate per il cloro totale.

La nostra soluzione: acido solforico al 25%

Lavaggio della vetreria dopo la determinazione del cloro totale (N° Cat. 1.00597.0001 / 1.00599.0001): dopo ogni determinazione di cloro totale, lavare la cuvetta con acido solforico al 25%, quindi sciacquare più volte con acqua distillata.

Spectroquant® Prove Applicazioni speciali

Metodi per birrifici

	Determinazione	Intervallo di misura	Metodo	Prove 100	300	600
A	∂ Acidi	0-80 mg/L	Colorazione propria			
	Amaro – Birra (metodo EBC)	1-80 unità d'amaro	Assorbanza UV			
	Amaro, mosto (metodo EBC)	1-120 unità d'amaro	Assorbanza UV			
	Antocianogeni (metodo di Harris e Ricketts)	0-100 mg/L	Idrolisi acida			
	Azoto amminico libero (birra/ mosto)	0-400 mg/L	Ninidrina			
C	Campione di iodio fotometrico	0,00-0,80	Iodio			
	Carboidrati totali (metodo EBC)	0,000-6,000 g/100 mL	Antrone			
	Colore (metodo EBC)	0,0-60,0 unità EBC	Colorazione propria			
D	Dichetoni vicinali	0,00-1,00 mg/kg	Fenilendiammina			
F	Fenoli volatili in corrente di vapore Malto Birra	0,00–3,00 mg/kg 0,00–0,30 mg/kg	Estrazione, amminoantipirina			
	Ferro (metodo EBC)	0,000-1,000 mg/L Fe	Ferrospectral®			
	Ferro (metodo EBC)	0,000-0,800 mg/L Fe	Ferrospectral®			
	Flavonoidi (metodo EBC)	3,0-200,0 mg/L	Aldeide 4-(dimetilammino)-cinnamica			
1	Iso-∂ acidi	0-60 mg/L	Assorbanza UV			
N	Nichel (metodo EBC)	0,00-5,00 mg/L Ni	Dimetilgliossima			
	Numero di acido tiobarbiturico (TAN)	0-250 TAN	Acidi tiobarbiturici			
P	Polifenoli totali (metodo EBC)	0-800 mg/L	Ferro (III)			
	Potere riducente, spettrofotometrico	0-100%	DPI			
R	Rame (metodo EBC)	0,10-5,00 mg/L Cu	Cuprethol			

Applicazioni chimiche e fisiche

	Determinazione	Intervallo di misura	Metodo	Prove		
	2 Stormina Erone			100	300	600
A	Ammoniaca, libera	0,00-3,65 mg/L NH ₃	Blu indofenolo			
B	Bromati nelle acque/ acque potabili	0,5-200 μg/L BrO ₃	3,3'-dimetilnaftidina			
C	Clorofilla a (DIN/ISO)	$0-50.000~\mu g/L$ Clor. a, Phaeo	Analogo a DIN 38412, ISO 10260			
	Clorofilla a (APHA/ASTM)	0–50.000 mg/m³ Clor. a, Phaeo	Analogo a APHA 10200-H, ASTM D3731-87	•	-	-
	Clorofilla a, b, c	0–50.000 mg/m $^{\rm 3}$ Clor. a, Clor. b, Clor. c	Metodo tricromatico, analogo a APHA 10200-H, ASTM D3731-87			
	Cobalto nelle acque	0,5-10,0 mg/L Co	Sale nitroso R			
	Coefficiente di assorbimento spettrale ∂(254)	0,5-250 m ⁻¹	Determinazione fisica secondo DIN 38404, a 254 nm			
	Coefficiente di assorbimento spettrale ∂(436)	0,5-250 m ⁻¹	Determinazione fisica secondo DIN 7887, a 436 nm	•	•	
	Coefficiente di attenuazione spettrale $\mu(254)$	0,5-250 m ⁻¹	Determinazione fisica secondo DIN 38404, a 254 nm			
M	Mercurio nelle acque/ acque reflue	0,025-1,000 mg/L Hg	Tiochetone di Michler			
N	Nitrato (UV)	0,0-7,0 mg/L N0 ₃ -N	Analogo a APHA 4500-N0 ₃ - B			
P	Palladio nelle acque/ acque reflue	0,05-1,25 mg/L Pd	Tiochetone di Michler			
	Platino nelle acque/ acque reflue	0,10-1,25 mg/L Pt	1,2-fenilendiammina			
S	Solidi sospesi	25-750 mg/L solidi sosp.	Determinazione fisica			

ICUMSA e analisi degli oli

I fotometri Spectroquant® Prove offrono applicazioni speciali per analizzare la qualità dell'olio di palma e d'oliva, oltre che dello zucchero, sulla base dei metodi raccomandati dagli enti normativi competenti. In aggiunta a più di 180 metodi preprogrammati, forniamo un software supplementare con applicazioni per esigenze più specifiche del controllo della qualità. Questi pacchetti garantiscono risultati accurati in conformità agli standard internazionali.

	Determinazione	Intervallo di misura	Metodo	Prove		
				100	300	600
C	Carotene - Olio di palma	10-7.500 mg/kg ß-Car	Colorazione propria			
D	DOBI - Olio di palma	0,00-4,00 DOBI	Assorbanza UV			
	Delta K268 - Olio d'oliva	-0,10-1,00 ΔK ₂₆₈	Assorbanza UV			
	Delta K270 - Olio d'oliva	-0,10-1,00 ΔK ₂₇₀	Assorbanza UV			
I	ICUMSA Colore GS1/3-7	0-50.000 IU _{7.0}	Colorazione propria			
	ICUMSA Colore GS2/3-9	0-600 IU _{7.0}	Colorazione propria			
	ICUMSA Colore GS2/3-10	0-50 IU _{7.0}	Colorazione propria			
	ICUMSA Colore GS9/1/2/3-8	0-20.000 IU _{7.0}	Colorazione propria			
K	K232 - Olio d'oliva	0,00-4,00 K ₂₃₂	Assorbanza UV			
	K268 - Olio d'oliva	0,00-4,00 K ₂₆₈	Assorbanza UV			
	K270 - Olio d'oliva	0,00-4,00 K ₂₇₀	Assorbanza UV			

Spectroquant® Prove Applicazioni speciali

Nuovi metodi per la determinazione del colore

Gli spettrofotometri Spectroquant® Prove consentono la determinazione del colori in una gran varietà di campioni, come birra, lubrificanti, oli o prodotti alimentari.

	Determinazione	Descrizione*	Prove 100		600	
A	Assorbanza UV	Determinazione spettrofotometrica a 254 nm	Q3 20	17		
C	Coefficiente di attenuazione spettrale con correzione della torbidità	Determinazione del coefficiente di attenuazione spettrale di un campione non filtrato nell'intervallo dell'UV tenendo conto della correzione della torbidità	Q3 20	17		
	Color (436)	Determinazione a 436 nm, intervallo 0,1-250 m ⁻¹				
	Colorazione C*ab CIE 1976	Valutazione delle coordinate di cromaticità secondo lo spazio di colore CIELAB	Q3 2017			
	Colore (525)	Determinazione a 525 nm, intervallo 0,1-250 m ⁻¹				
	Colore (620)	Determinazione a 620 nm, intervallo 0,1-250 m ⁻¹				
	Colore (410) (EN 7887)	Determinazione a 410 nm, intervallo 2-2.500 mg/L Pt				
	Colore (ASBC)	Determinazione del colore nei prodotti dei birrifici secondo l'ASBC (American Society of Brewing Chemists)	Q3 20	17		
	Colore ASTM	Determinazione del colore di un'ampia gamma di derivati del petrolio (oli lubrificanti, gasolio da riscaldamento, oli combustibili diesel, cere)	Q1 20	17		
	Colore di Saybolt	Determinazione del colore di oli raffinati (carburante senza colorante per motori e per aviazione, carburanti per motori a reazione, nafta, kerosene, cere derivate dal petrolio e oli bianchi farmaceutici)	Q1 2017			
	Colore Gardner	Valutazione del colore in base alla scala di Gardner - liquidi limpidi, giallo-marrone, es. oli essiccanti, vernici, soluzioni di acidi grassi, resine, ecc.	Q1 2017			
	Colore Klett	Determinazione spettrofotometrica del colore Klett comparabile con il colorimetro Klett-Summerson	Q3 20	17		
	Colore, Hazen	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2, a 340 nm, intervallo 0,2 – 500 mg/L Pt, Pt/Co, Hazen, CU				
	Colore, Hazen	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2, a 445 nm, intervallo 0 – 1.000 mg/L Pt, Pt/Co, Hazen, CU	•		•	
	Colore, Hazen	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2, a 455 nm, intervallo 0 – 1.000 mg/L Pt, Pt/Co, Hazen, CU				
	Colore, Hazen	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2, a 3465 nm, intervallo 0 – 1.000 mg/L Pt, Pt/Co, Hazen, CU	•			
	Costituenti organici assorbenti UV	Determinazione spettrofotometrica di costituenti organici assorbenti UV a 254 nm	Q3 20	17		
D	Differenza di colore delta E*ab (CIE)	Valutazione delle differenze di colore secondo lo spazio di colore CIELAB	Q3 20	17		
	Differenza di colore delta L* (CIE)		Q3 20	17		
	Differenza di colore delta a* (CIE)		Q3 20	17		
	Differenza di colore delta b* (CIE)		Q3 20	17		
	Differenza di colore delta C*ab (CIE)		Q3 20	17		
	Differenza di colore delta E*ab (Hunter)	Valutazione delle differenze di colore secondo lo spazio di colore HunterLab	Q3 20	17		
	Differenza di colore delta L* (Hunter)		Q3 20	17		
	Differenza di colore delta a* (Hunter)		Q3 20	17		
	Differenza di colore delta b* (Hunter)		Q3 20	17		
	Differenza di colore delta C*ab (Hunter)		Q3 20	17		
I	Indice di bianco	Determinazione dell'indice di bianco dalle coordinate di colore misurate strumentalmente secondo ASTM E 313-15e1	Q3 20	17		
	Indice di giallo Determinazione dell'indice di giallo dalle coordinate di colore misurate strumentalmente secondo ASTM E 313-15e1		Q3 20	17		

	Determinazione	Descrizione*	Prove 100 300	600
I	Indice di tinta	Determinazione dell'indice di tinta dalle coordinate di colore misurate strumentalmente secondo ASTM E 313-15e1	Q3 2017	
L	L*a*b CIE 1976	Valutazione delle coordinate di cromaticità secondo CIELAB 1976	Q3 2017	
	L*u*v CIE 1976		Q3 2017	
	L * luminosità CIE 1976		Q3 2017	
	L*a*b Hunter	Valutazione delle coordinate di cromaticità secondo lo spazio di colore HunterLab	Q3 2017	
N	Numero di colore di iodio, intervallo inferiore	Misurazione a 340 nm, corrisponde a DIN 6162 A, intervallo 0,010 – 3,00		
	Numero di colore di iodio, intervallo superiore	Misurazione a 445 nm, corrisponde a DIN 6162 A, intervallo 0,2 – 50,0	•	
S	Spazio di colore xyY (spazio di colore CIE)	Valutazione delle coordinate di cromaticità secondo lo spazio di colore CIELAB	Q3 2017	
T	Trasmittanza	Caratterizzazione spettrofotometrica di liquidi otticamente limpidi colorati	Q3 2017	
	Trasmittanza UV	Determinazione spettrofotometrica a 254 nm	Q3 2017	
u	Unità di colore Hess-Ives	Determinazione spettrofotometrica delle unità di colore Hess-Ives	Q3 2017	

^{*} Gli intervalli di misura saranno determinati durante lo sviluppo dell'applicazione

si cenga aggiornato

Nuovo kit in cuvetta per i tensioattivi anionici. Sensibilità superiore, maggiore semplicità d'impiego

I tensioattivi entrano nei sistemi idrici a causa dell'uso massivo nei detergenti e nei processi industriali. Poiché essi possono essere nocivi per uomini, animali e vegetazione, le autorità richiedono un regolare trattamento e controllo delle acque reflue a conferma che il contenuto di tensioattivi rientri nei limiti stabiliti. I tensioattivi si dividono in tre classi principali: anionici, cationici e non ionici. I tensioattivi anionici sono i più problematici perché essi vengono digeriti solo parzialmente dai batteri durante il trattamento delle acque. Per una maggiore accuratezza, il nuovo kit in cuvetta Spectroquant® per i tensioattivi anionici offre maggiore sensibilità e facilità d'impiego.

Passi alle versioni più recenti:

- kit in cuvetta per tensioattivi anionici [N° Cat. 1.02552.0001]
- kit in cuvetta per tensioattivi cationici [N° Cat. 1.01764.0001]
- kit in cuvetta per tensioattivi non ionici [N° Cat. 1.01787.0001]

Preparazione dei campioni Spectroquant®

Preparati perfettamente

I nostri kit analitici contengono già tutti i reagenti necessari per la preparazione dei campioni e l'analisi, quando è richiesta la decomposizione. Tuttavia, per alcuni parametri non è sempre necessaria la digestione. Allora, può scegliere i nostri economici ed affidabili crack set Spectroquant® che contengono soltanto i reattivi di digestione che le servono, completi di istruzioni chiare e semplici. Per un'ottimale preparazione dei campioni, offriamo anche una gamma di termoreattori Spectroquant® che, combinando precisione e velocità eccezionali, assicurano una digestione completa.

Crack set Spectroquant®

Determinazione del contenuto totale

Crack set Spectroquant®

Offriamo tre crack set tra cui scegliere per la determinazione del contenuto totale di diversi parametri. Ognuno di essi contiene tutti i reagenti necessari per la digestione.

Spectroquant®	Crack set 10 N° Cat. 1.14687.0001	Crack set 10 C N° Cat. 1.14688.0001	Crack Set 20 N° Cat. 1.14963.0001
Digestioni	100	25	90
Preparazione dei campioni per la determinazione del contenuto totale di	Cd, Cr, Co, Fe, Pb, Ni, P, Zn	Cd, Cr, Co, Fe, Pb, Ni, P, Zn	Azoto
Contenuto	Reattivo di digestione Acido Neutralizzante per la regolazione del pH	Cuvette da 16 mm ø preriempite di reattivo di digestione Acido Neutralizzante per la regolazione del pH	Reattivo di digestione Soda caustica
Accessori	Cuvette vuote da 16 mm ø con tappo a vite N° Cat. 1.14724.0001		Cuvette vuote da 16 mm ø con tappo a vite N° Cat. 1.14724.0001

sicurezza

Analisi accurate di tutti i parametri delle acque reflue con i kit analitici Spectroquant®

Per quanto riguarda i parametri delle acque reflue, in ogni paese o regione vigono normative e limiti differenti. Dove procurarsi i kit desiderati che soddisfino esattamente i limiti necessari? Merck offre la soluzione perfetta: comodi kit in cuvetta ed economici kit di reagenti per tutti i parametri delle acque reflue. Combini i nostri kit analitici di elevata qualità con gli spettrofotometri Spectroquant[®] Prove per analisi veloci, semplici e accurate.

Parametri: ammonio, azoto (totale), cadmio, COD, cloruri, cromo, fosforo (totale), nichel, nitrati, nitriti, piombo, rame, solfati

Maggiori informazioni alle pagine 58-79

Termoreattori Spectroquant®

Digestione completa e costante

Sviluppati con prove pratiche per applicazioni pratiche, i **termoreattori Spectroquant**® offrono tutto quello che serve per una perfetta preparazione dei campioni: affidabilità, semplicità, sicurezza e compatibilità con le esigenze future. Può scegliere tra i programmi preinstallati, per evitare errori negli impieghi di routine, o programmare i Suoi metodi personali, per una completa flessibilità.

possibilità di scelta

tra programmi standard e personalizzati

semplicità d'impiego

con la nostra chiara guida alla digestione

zone di riscaldamento
in un solo
strumento (TR 620)

I termoreattori Spectroquant® offrono 8 programmi di digestione preinstallati per gli impieghi di routine

Temperatura	Tempo	Metodo
148 °C	120 min	COD
148 °C	20 min	COD (metodo di digestione rapido)
150 °C	120 min	COD secondo USEPA
120 °C	120 min	TOC
120 °C	60 min	Azoto totale, contenuto totale di Cr, Cu, Ni, Pb, Cd, Fe, Zn e Ag
120 °C	30 min	AOX e fosforo totale, cianuri
100 °C	60 min	
100 °C	30 min	

Una descrizione delle procedure di digestione è fornita nelle istruzioni allegate ai kit analitici. Speciali varianti di digestione possono essere scaricate da: www.merckmillipore.com/aaf

Spectroquant® TR 320 N° Cat. 1.71200.0001

Modello standard per un impiego basilare

12 postazioni | 8 programmi preinstallati

Spectroquant® TR 420 N° Cat. 1.71201.0001

Dispositivo evoluto per un uso frequente

24 postazioni | 8 programmi preinstallati e 8 impostabili a piacere

Spectroquant® TR 620 N° Cat. 1.71202.0001

Due strumenti in uno per un impiego flessibile

2 x 12 postazioni | 8 programmi preinstallati e 8 impostabili a piacere | 2 zone di riscaldamento con temperature controllabili separatamente

Dati tecnici			attori Spec	
		TR 320	TR 420	TR 620
Compresi nella fornitura	Cappa di protezione integrata per la determinazione di COD e TOC, oltre che del contenuto totale di cadmio, cromo, rame, cianuri, ferro, piombo, nichel, azoto, fosforo, argento e zinco.	•	•	•
Schermo	Schermo LCD per la temperatura e il tempo, valori desiderati ed effettivi per il tempo e la temperatura di riscaldamento sempre visualizzati sullo schermo LCD	•		
Dispositivo di riscaldamento	Visualizzazione on/off (il LED lampeggia in rosso nel corso del riscaldamento ed è costantemente acceso durante la digestione), protezione dai contatti accidentali sulla superficie del blocco riscaldante			
Funzioni	8 programmi preinstallati			
	8 programmi impostabili a piacere			
	Digestione simultanea di 12 campioni			
	Digestione simultanea di 24 campioni			
	Libera selezione di temperatura e tempo			
	Due zone di riscaldamento distinte con temperature selezionabili separatamente			
	Disponibili termosensore e cavo per PC			
	Documentazione AQA per scopi di controllo			
Postazioni	12 per kit in cuvetta da ø 16 mm			
	24 per kit in cuvetta da ø 16 mm			
	24 (2 x 12) per kit in cuvetta da ø 16 mm			
Temperature selezionabili	100 °C, 120 °C, 148 °C e 150 °C ±1,0 °C			
	Da temperatura ambiente a 170 °C ±1,0 °C			
Accuratezza del controllo	±1 °C ± 1 cifra			
Contaminuti	Libertà di selezione tra 0 e 180 min			
Tempi di riscaldamento	8 programmi per tempi e temperature di riscaldamento, per semplificare al massimo il funzionamento: 148 °C (20 min o 120 min), 150 °C (120 min), 120 °C (30 min, 60 min o 120 min), 100 °C (30 + 60 min); spegnimento automatico alla fine del periodo di riscaldamento		•	
Compatibilità con la rete elettrica	115 V~/230 V~, 50 Hz/60 Hz convertibile	•	•	•
Dimensioni	180 x 245 x 292 mm (A x L x P)			
Peso	2,85 kg			
	3,6 kg			
Accessori opzionali	Termosensore: possibilità di monitorare la temperatura del blocco riscaldante attraverso l'interfaccia seriale integrata e il software di controllo per l'AQA, adattatore in bronzo con sensore in Pt integrato della misura dei fori con cavo di collegamento (per il controllo dell'apparecchiatura)		•	•

Termosensore per termoreattori TR 420/620

Il termosensore misura la temperatura corrente nel foro del termoreattore e lo confronta con la

temperatura specificata. I risultati possono essere trasferiti a un PC a fini documentativi.

Cavo PC per termoreattori TR 420/620

N° Cat. 1.71204.0001

Per analisi rapide e sicure, non c'è scelta migliore dei kit analitici Spectroquant[®]. Costituiti da reagenti convalidati e conformi agli standard, i kit sono preprogrammati per l'utilizzo con gli strumenti Spectroquant[®] in modo da garantire risultati rapidi e affidabili. Grazie ad una qualità eccellente, la maggior parte dei kit è conforme agli standard internazionali e consente quindi di eseguire le analisi in totale sicurezza.

sensibilità

Deve determinare dei parametri in concentrazioni estremamente basse? Con le cuvette da 100 mm e lo strumento Spectroquant® Prove 600, può misurare accuratamente le minori concentrazioni di analita possibili con metodi fotometrici.

Kit analitici supersensibili

Ferro [N° Cat. 1.14761.0001]

0,0005-5,00 mg/L Fe | Cuvette da 10, 20, 50 e 100 mm

Fosfati [N° Cat. 1.14848.0001]

0,0005–5,00 mg/L PO $_{4}$ -P | Cuvette da 10, 20, 50 e 100 mm

Silicati (acido silicico) [N° Cat. 1.01813.0001]

0,00025 - 0,5000 mg/L SiO₂ | Cuvette da 50 e 100 mm

analisi sicure

con reagenti convalidati, conformi agli standard

Identificazione con codici a barre

per un funzionamento semplice e rapido

Risultati rapidi e affidabili

nonostante i valori dei bianchi siano preprogrammati

Kit di reagenti

- Contengono miscele di reagenti pronte all'uso e molto stabili
- L'AutoSelector utilizza un sistema di codici a barre per selezionare automaticamente il metodo d'analisi corretto nei fotometri Spectroquant® NOVA e Prove
- L'intervallo di misura può essere facilmente modificato, selezionando il formato della cuvetta appropriato
- L'inserto della confezione spiega il principio di reazione, le procedure operative e i settori di applicazione
- Lunga durata, fino a tre anni a temperatura ambiente

NH,

Kit in cuvetta

- Contengono praticamente tutti i reagenti necessari per l'analisi
- I fotometri Spectroquant[®] NOVA e Prove riconoscono automaticamente il kit e selezionano il metodo analitico corretto
- L'etichetta del kit fornisce tutte le informazioni importanti relative al contenuto, alla sicurezza e al numero di lotto
- L'inserto della confezione spiega il principio di reazione, le procedure operative e i settori di applicazione
- Lunga durata, fino a tre anni a temperatura ambiente

Norme internazionali e metodi approvati

Analisi delle acqua in conformità alle normative nazionali o ai metodi USEPA

Poiché l'acqua contaminata è nociva per gli uomini e l'ambiente, gli enti normativi come l'USEPA (U.S. Environmental Protection Agency) richiedono l'impiego di metodi ufficiali per l'analisi delle acque potabili e delle acque reflue. Per aiutarla nelle analisi, abbiamo sviluppato molti kit Spectroquant[®] in conformità a standard approvati dall'USEPA o dall'ISO. Ciò assicura risultati affidabili, riproducibili e conformi alle norme vigenti.

USEPA

Approvati dall'USEPA: metodi identici a quelli USEPA; una copia della lettera di approvazione da parte dell'USEPA è disponibile per chi ne faccia richiesta.

USEPA-equivalenti: i kit sono convalidati in conformità a procedure definite; la chimica è equivalente a quella di metodi USEPA o APHA.

La nostra icona "Approvato USEPA" La aiuterà a trovare facilmente i kit Spectroquant® giusti nelle tabelle che seguono.

Per i metodi approvati e equivalenti, le tabelle riportano anche i riferimenti alle norme e agli standard corrispondenti.

Per maggiori informazioni, si prega di visitare: www.merckmillipore.com/usepa

ad offrire un'ampia gamma di saggi fotometrici approvati per le acque potabili, le acque reflue e le analisi ambientali.

Monitora la qualità delle acque potabili?

La tabella che segue offre un confronto delle concentrazioni previste da WHO, Unione Europea e USEPA per alcuni parametri dell'acqua.

	Parametro	Linee guida WHO	EU	USEPA
	Da	2011	Ottobre 2015	Maggio 2009
A	Alluminio (Al)	Non disponbile	0,2 mg/L	0,05-0,2 mg/L
	Ammonio (NH ₄)	Non disponbile	0,5 mg/L	
	Antimonio	0,02 mg/L	0,005 mg/L	0,006 mg/L
	Argento (Ag)	Non disponbile		0,1 mg/L
	Arsenico (As)	0,01 mg/L	0,01 mg/L	0,01 mg/L
B	Bario (Ba)	0,7 mg/L		2 mg/L
	Biossido di cloro (CIO ₂)	Non disponbile		0,8 mg/L
	Boro (B)	2,4 mg/L	1 mg/L	
	Bromati	0,01 mg/L	0,01 mg/L	0,01 mg/L
C	Cadmio (Cd)	0,003 mg/L	0,005 mg/L	0,005 mg/L
	Cianuri (Cy)	Non disponbile	0,05 mg/L	0,2 mg/L
	Cloro (Cl ₂) libero	0,2 mg/L (concentrazione residua minore possibile al		4 mg/L
		punto d'erogazione)		
	Cloro (totale)	0,2-1 mg/L		
	Cloruri (Cl-)	Non disponbile	250 mg/L	250 mg/L
	Coliformi (totali)	0	0	5 %
	(microrganismi/100 mL)			
	Colore	Accettabile	Accettabile	15 unità colore
	Conducibilità		2500 μS/cm	
	Cromo (Cr)	0,05 mg/L	0,05 mg/L	0,1 mg/L
F	Ferro (Fe)	Non disponbile	0,2 mg/L	0,3 mg/L
	Fluoruri (F ⁻)	1,5 mg/L	1,5 mg/L	4 mg/L
M	Manganese (Mn)	Non disponbile	0,05 mg/L	0,05 mg/L
	Mercurio (Hg)	0,006 mg/L	0,001 mg/L	0,002 mg/L
	Molibdeno (Mo)	Non disponbile		
	Monoclorammine (come Cl ₂)	3 mg/L		
N	Nichel (Ni)	0,07 mg/L	0,02 mg/L	
	Nitrati	50 mg/L (come NO ₃ -)	50 mg/L (come NO ₃)	10 mg/L (come N)
	Nitriti	3 mg/L (come NO ₂ -)	0,5 mg/L (come NO ₂)	1 mg/L (come N)
P	pH	Non disponbile	6,5-9,5	6,5-8,5
	Piombo (Pb)	0,01 mg/L	0,01 mg/L	0,015 mg/L
R	Rame (Cu)	2 mg/L	2 mg/L	1 mg/L
S	Selenio (Se)	0,04 mg/L	0,01 mg/L	0,05 mg/L
	Sodio (Na)	Non disponbile	200 mg/L	250 /1
	Solfati (SO ₄)	Non disponbile	250 mg/L	250 mg/L
_	Solidi disciolti totali (TDS)	Non disponbile	0.1 //	500 mg/L
T	Trialometani (totali)	Cloroformio: 0,3 mg/L	0,1 mg/L	0,08 mg/L
		Bromoformio: 0,1 mg/L Dibromoclorometano (DBCM): 0,1 mg/L		
		Bromodiclorometano (BDCM): 0,1 mg/L		
		bromodiciorometano (bbcm): 0,06 mg/L		

Guidelines for Drinking Water Quality, 4° edizione (Non disponibile significa che la WHO non ha fornito linee guida per il parametro, poiché non trovato nelle acque potabili a livelli che potrebbero rappresentare un pericolo per la salute)
 Drinking Water Directive of the European Union (Direttiva del Consiglio 98/83/CE), consolidata con gli ultimi emendamenti dell'ottobre 2015

USEPA National Primary Drinking Water Regulations and Secondary Drinking Water Standards, maggio 2009

Parametri A

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
A	Acidi organici volatili, kit A)	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	Acido acetico Acido butirrico	100	1.01809.0001
	Acidi organici volatili, kit in cuvetta	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	50 - 3.000 71 - 4.401	Acido acetico Acido butirrico	25	1.01749.0001
	Acido cianurico, kit	2 - 160	2 - 160 •	2 - 160	2 - 160	Acido cianurico	100	1.19253.0001
	Acido isoascorbico (acido eritorbico)							
	Acido solfidrico							
	Alcalinità (totale)							
	Alluminio, kit in cuvetta	0,02 - 0,50	0,02 - 0,50	0,05 - 0,50	0,05 - 0,50	Al	25	1.00594.0001
	Alluminio, kit	0,020 - 1,20	0,020 - 1,20	20 - 700 μg/L	20 - 700 μg/L	Al	350	1.14825.0001
	Ammoniaca, libera	0,000 - 3,00 0,000 - 3,65	-	-	-	NH ₃ -N NH ₃	-	-
Approvato USEPA	Ammonio, kit in cuvetta ^{B.3)}	0,010 - 2,000 0,01 - 2,58 0,010 - 2,000 0,01 - 2,43	0,010 - 2,000 0,01 - 2,58	10 – 2.000 μg/L 10 – 2.576 μg/L	10 - 2.000 μg/L 10 - 2.576 μg/L	NH ₄ -N NH ₄ NH ₃ -N NH ₃	25	1.14739.0001
Approvato USEPA	Ammonio, kit ^{8.3)}	0,010 - 3,00 0,013 - 3,86 0,010 - 3,00 0,016 - 3,65	0,010 - 3,00 • 0,013 - 3,86 •	0,02 - 1,30 0,03 - 1,67	0,02 - 1,30 0,03 - 1,67	NH ₄ -N NH ₄ NH ₃ -N NH ₃	250 500	1.14752.0002 1.14752.0001
Approvato USEPA	Ammonio, kit in cuvetta ^{B.3)}	0,20 - 8,00 0,26 - 10,30 0,20 - 8,00 0,24 - 9,73	0,20 - 8,00 0,26 - 10,30	0,20 - 8,00 0,26 - 10,30	0,20 - 8,00 0,26 - 10,30	NH ₄ -N NH ₄ NH ₃ -N NH ₃	25	1.14558.0001
Approvato USEPA	Ammonio, kit in cuvetta ^{B.3)}	0,5 - 16,0 0,6 - 20,6 0,5 - 16,0 0,6 - 19,5	0,5 - 16,0 0,6 - 20,6	-	-	NH ₄ -N NH ₄ NH ₃ -N NH ₃	25	1.14544.0001
Approvato USEPA	Ammonio, kit ^{8.3)}	2,0 - 150 2,6 - 193 2,0 - 150 2,4 - 182	2,0 - 150 • 2,6 - 193 •	1,0 - 50,0 1,3 - 64,4	1,0 - 50,0 1,3 - 64,4	NH ₄ -N NH ₄ NH ₃ -N NH ₃	100	1.00683.0001
Approvato USEPA	Ammonio, kit in cuvetta ^{B.3)}	4,0 - 80,0 5,2 - 103,0 4,0 - 80,0 4,9 - 97,3	4,0 - 80,0 5,2 - 103,0	4,0 - 80,0 5,2 - 103,0	4,0 - 80,0 5,2 - 103,0	NH ₄ -N NH ₄ NH ₃ -N NH ₃	25	1.14559.0001

A. Il kit in cuvetta contiene quattro cuvette da 16 mm con etichetta con codice a barre. Dopo una misurazione è possibile svuotare le cuvette e lavarle per le misurazioni successive. | B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | • Solo con NOVA 60

ambientali sono disponibili on-line. Giorno e notte! Per ulteriori dettagli e per acquistare in tutta semplicità, visiti www.sigma-aldrich.com

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Acidi idrossamici/sali di ferro (III)	-	0,75 + 0,5 + 5,0	-	±85	4, 8, 11, 18
Acidi idrossamici/sali di ferro (III)	-	0,5 + 5,0	-	±69	4, 8, 11, 18
Torbidità	-	5,0	20	±5	7, 11, 17
	Vedere "Sequestranti dell'ossigeno, kit"				
	Vedere Solfuri				
	Vedere Capacità acida fino a pH 4,3, kit in cuvetta				
Cromazurolo S	Analogo a APHA 3500-Al B, DIN ISO 10566	0,25 + 6,0	-	±0,02	1, 6, 8, 9, 11, 13, 15, 16, 17, 18
Cromazurolo S	Analogo a APHA 3500-Al B, DIN ISO 10566	0,25 + 1,2 + 5,0	10, 20, 50	±0,009	1, 6, 9, 11, 13, 15, 16, 17, 18
-	Applicazione, misurazione dell'ammoniaca libera in considerazione del pH e della temperatura del campione dopo la determinazione spettrofotometrica del contenuto di ammonio, richiesto in aggiunta 1.14752	0,6 + 5,0	10, 20, 50	-	2, 9, 13, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH $_3$ F, ISO 7150-1, DIN 38406-5	5,0	-	±0,050	1, 2, 5, 9, 11, 12, 13, 15, 17, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH ₃ F, ISO 7150-1, DIN 38406-5	0,6 + 5,0	10, 20, 50	±0,016	1, 2, 5, 9, 11, 12, 13, 15, 16, 17, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH $_3$ F, ISO 7150-1, DIN 38406-5	1,0	-	±0,19	1, 2, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH ₃ F, ISO 7150-1, DIN 38406-5	0,5	-	±0,4	1, 6, 8, 11, 13, 16, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH ₃ F, ISO 7150-1, DIN 38406-5	0,1 + 0,2 + 5,0	10	±1,7	1, 4, 8, 9, 12, 13, 16, 18
Blu indofenolo	Analogo a EPA 350.1, APHA 4500-NH ₃ F, ISO 7150-1, DIN 38406-5	0,1	-	±1,9	1, 4, 8, 12, 13, 16, 18

Settori d'applicazione:	3	В
	4	Bi

- Bevande
- Biotecnologia, fermentatori
- Agricoltura Acque di riscaldamento / Acque di raffreddamento
- Materiali edili 2 Acquacoltura

- Controllo delle procedure di disinfezione
- Acque di drenaggio
- Acque potabili
- Finitura delle superfici mediante galvanoplastica 10
- 11 Ambiente

14

Prodotti lattiero-caseari

- Analisi degli alimenti 12 Acque freatiche, acque di superficie
- Acque minerali
- Acque di mare 16
- Piscine 18 Acque reflue

Parametri A-B

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
A	Antimonio	0,10 - 8,00	0,10 - 8,00	-	-	Sb	-	-
	AOX, kit in cuvetta	0,05 - 2,50	0,05 - 2,50	0,05 - 2,50	0,05 - 2,50	AOX	25	1.00675.0001
	AOX, set per la preparazione dei campioni	-	-	-	-	-	25	1.00677.0001
	AOX, set arricchimento	-	-	-	-	-	2	1.00678.0001
	AOX, standard 0,2 – 2,0 mg/L	-	-	-	-	-	8 - 16	1.00680.0001
	Argento, kit	0,25 - 3,00	0,25 - 3,00 •	-	-	Ag	100	1.14831.0001
	Arsenico, kit	0,001 - 0,100	0,001 - 0,100 •	5 – 100 μg/L	5 – 100 μg/L	As	30	1.01747.0001
	Arsenico, reagente 2: acido solforico 95 – 97 % per analisi EMSURE® ISO	-	-	-	-	-	50	1.00731.1000
	Arsenico, reagente 7: zinco granulare per analisi, dimensione particelle circa 3 – 8 mm EMSURE® ISO	-	-	-	-	-	27	1.08780.0500
	Assorbanza	-3,300 - 3,300 A	-0,300 - 3,000 A	-2,600 – 2,600 A	-2,600 - 2,600 A	-	-	
	Azoto (totale), kit in cuvetta	0,5 - 15,0	0,5 - 15,0	-	-	N	25	1.00613.0001
	Azoto (totale), kit in cuvetta	0,5 - 15,0	0,5 - 15,0	0,5 - 15,0	0,5 - 15,0	N	25	1.14537.0001
	Azoto (totale), kit in cuvetta	10 - 150	10 - 150	-	-	N	25	1.14763.0001
B	Biossido di cloro, kit	0,020 - 10,00	0,020 - 10,00 •	0,05 - 10,00	0,05 - 10,00	CIO ₂	200	1.00608.0001
	BOD, kit in cuvetta ^{A)}	0,5 - 3.000	0,5 - 3.000	0,5 - 3.000	0,5 - 3.000	BOD	50	1.00687.0001
	BOD, miscela di sali nutritivi (con alliltiourea)	-	-	-	-	-	12 L	1.00688.0001
	BOD, flacone di reazione (ossigeno)	-	-	-	-	-	1	1.14663.0001
	BOD, standard 210 \pm 20 mg/L	-	-	-	-	-	10 L	1.00718.0001
	Boro, kit	0,050 - 0,800	0,050 - 0,800	-	-	В	60	1.14839.0001
	Boro, kit in cuvetta	0,05 - 2,00	0,05 - 2,00	0,05 - 2,00	0,05 - 2,00	В	25	1.00826.0001
	Bromati	0,5 – 200 μg/L ^{D)} 0,5 – 100 μg/L ^{E)}	0,003 - 0,120	-	-	BrO ₃	-	-
	Bromo, kit	0,020 - 10,00	0,020 - 10,00	0,10 - 5,00	0,10 - 5,00	Br ₂	200	1.00605.0001

A. Il kit in cuvetta contiene tre cuvette da 16 mm con etichetta con codice a barre. Dopo una misurazione è possibile svuotare le cuvette e lavarle per le misurazioni successive. | D. Con Prove 600. | E. Con Prove 100 e 300. | • Solo con NOVA 60

www.	merc	kmillipore.c	om/bromate

Materiale aggluntivo necessario per la determinazione di ADX						
Tiocianato di ferro (III) Adsorbimento analogo a EN ISO 9562 0,2 + 1,0 + 7,0 - #0,20 5,8,9,10,11, 13, 15, 15	Metodo	Riferimenti a norme e standard / Commenti		delle cuvette [mm]	ratezza	Settori d'applicazione
- Materiale aggluntivo necessario per la determinazione di AOX - Per usi ripetuti, materiale aggluntivo necessario per la determinazione di AOX - Per 8-16 fest di qualità, analogo a DIN EN ISO 9562 5,0 / 10,0 5,8,8,9,10,11,13,15,18 - Eosina, 1,10-fenantrolina I reagenti per la digestione nel termoreattore sono inclusi nel kit analitico - DDTC d'argento Analogo a EPA 206.4, APHA 3500-As B, ASTM 1,0 +5,0 + 20 10, 20 ±0,003 5,8,9,10,11,13,15, 18 - Materiale aggluntivo necessario per la determinazione dell'arsenico - Nateriale aggluntivo necessario per la determinazione dall'arsenico - Nateriale aggluntivo necessario per la determinazione dell'arsenico - Nateriale aggluntivo necessario per la determinazione del Noroleff, 2,6-dimetilifenolo dell'arsenico - Nateriale aggluntivo necessario per la determinazione del Noroleff, 2,6-dimetilifenolo dell'arsenico - Nateriale aggluntivo necessario per la determinazione del Noroleff, 2,6-dimetilifenolo dell'arsenico - Nateriale aggluntivo necessario per la determinazione del Noroleff, 2,6-dimetilifenolo dell'arsenico - Nateriale aggluntivo necessario per la determinazione del Noroleff, 2,6-dimetilifenolo dell'arsenico - Nateriale aggluntivo necessario per la dell'arsenico - Nateriale aggluntivo necessario per la dell'arsenico - Nateriale aggluntivo necessario per la dell'arsenico - Nat	Verde brillante		4,0 + 1,0 + 5,0	10	-	11, 18
determinazione di AOX	Tiocianato di ferro (III)	Adsorbimento analogo a EN ISO 9562	0,2 + 1,0 + 7,0	-	±0,20	5, 8, 9, 10,11, 13, 15, 18
La determinazione di AOX	-		-	-	-	
Eosina, 1,10-fenantrolina I reagenti per la digestione nel termoreatitore sono 1,0 + 10 10, 20 ±0,07 10, 18	-		-	-	-	
DDTC d'argento	-	Per 8-16 test di qualità, analogo a DIN EN ISO 9562	5,0 / 10,0	-	-	
D297Z-08A	Eosina, 1,10-fenantrolina		1,0 + 10	10, 20	±0,07	10, 18
Colorazione propria	DDTC d'argento			10, 20	±0,003	
Colorazione propria Determinazione fisica - 10, 20, 50 -	-		-	-	-	
Digestione di Koroleff, 2,6-dimetilfenolo Digestione analoga a DIN EN ISO 11905-1, 2,6-dimetilfenolo determinazione analoga a DIN SA405-9 1,0 + 10 -	-		-	-	-	
2,6-dimetilfenolo determinazione analoga a DIN 38405-9	Colorazione propria	Determinazione fisica	-	10, 20, 50	-	
Digestione di Koroleff, 2,6-dimetilfenolo Digestione analoga a DIN EN ISO 11905-1, determinazione analoga a DIN S8405-9 1,0 + 9,0 -	-		1,0 + 10	-	±0,5	1, 2, 5, 8, 11, 13, 14, 18
2,6-dimetilfenolo determinazione analoga a DIN 38405-9 DPD Analogo a APHA 4500-CIO₂ D, DIN 38408-5 10 10, 20, 50 ±0,045 5, 7, 9, 15, 17 Metodo Winkler modificato ±0,5 2, 8, 9, 10, 11, 13, 16, 18 - Per 12 x 1 L di soluzione di sali nutritivi, richiesta in aggiunta per la determinazione del BOD, anal. DIN EN 1899 - Per 1 determinazione sono necessari 4 flaconi, per 2 det.6, per 3 det.8, ecc Per 10 x 1 L di soluzione standard, analogo a DIN per 2 det.6, per 3 det.8, ecc. Rosocianina Analogo a EPA 212.3, ASTM D3082-09, 0,5 + 0,8 + 1,0 10 ±0,030 1, 9, 11, 13, 15, 18 + 1,5 + 5,0 + 6,0 Azometina H Analogo a DIN 38405-17 1,0 + 4,0 - ±0,09 1, 9, 11, 13, 15, 16, 18 3,3'-dimetilnaftidina Applicazione, ulteriori informazioni nei manuali 10 + 0,10 + 100, 50 7, 9, 13, 15 DPD - 10 10, 20, 50 ±0,047 5, 7, 9, 17, 18 Settori d'applicazione: 3 Bevande 7 Controllo delle procedure di 11 Ambiente 15 Acque minerali		Digestione analoga a DIN EN ISO 11905-1	1,5 + 10	-	±0,6	1, 2, 5, 8, 11, 13, 14, 18
Metodo Winkler modificato - - ±0,5 2, 8, 9, 10, 11, 13, 16, 18 - Per 12 x 1 L di soluzione di sali nutritivi, richiesta in aggiunta per la determinazione del BOD, anal. DIN EN 1899 20 - - - Per 1 determinazione sono necessari 4 flaconi, per 2 det.6, per 3 det.8, ecc. - - - - Per 10 x 1 L di soluzione standard, analogo a DIN EN 1899 - - - Rosocianina Analogo a EPA 212.3, ASTM D3082-09, APHA 4500-B B 0,5 + 0,8 + 1,0 10 10 10 10 10 10 10 10 10 10 10 10 10			1,0 + 9,0	-	±5,0	1, 8, 11, 14, 18
Metodo Winkler modificato - - ±0,5 2, 8, 9, 10, 11, 13, 16, 18 - Per 12 x 1 L di soluzione di sali nutritivi, richiesta in aggiunta per la determinazione del BOD, anal. DIN EN 1899 20 - - - - Per 1 determinazione sono necessari 4 flaconi, per 2 det.6, per 3 det.8, ecc. - - - - - - - Per 10 x 1 L di soluzione standard, analogo a DIN EN 1899 -	DPD	Analogo a APHA 4500-ClO, D, DIN 38408-5	10	10, 20, 50	±0,045	5, 7, 9, 15, 17
aggiunta per la determinazione del BOD, anal. DIN EN 1899 - Per 1 determinazione sono necessari 4 flaconi, per 2 det.6, per 3 det.8, ecc. - Per 10 x 1 L di soluzione standard, analogo a DIN	Metodo Winkler modificat	-	-	-	±0,5	
per 2 det.6, per 3 det.8, ecc. Per 10 x 1 L di soluzione standard, analogo a DIN	-	aggiunta per la determinazione del BOD, anal.	20	-	-	
EN 1899 Rosocianina Analogo a EPA 212.3, ASTM D3082-09,	-	•	-	-	-	
APHA 4500-B B	-	, ,	-	-	-	
3,3'-dimetilnaftidina Applicazione, ulteriori informazioni nei manuali 10 + 0,10 + 100, 50 7, 9, 13, 15 DPD - 10 10, 20, 50 ±0,047 5, 7, 9, 17, 18 Settori d'applicazione: 3 Bevande 7 Controllo delle procedure di 11 Ambiente 15 Acque minerali	Rosocianina		+ 1,5 + 5,0	10	±0,030	1, 9, 11, 13, 15, 18
DPD – 10 10, 20, 50 ±0,047 5, 7, 9, 17, 18 Settori d'applicazione: 3 Bevande 7 Controllo delle procedure di disinfezione 11 Ambiente 15 Acque minerali	Azometina H	Analogo a DIN 38405-17	1,0 + 4,0	-	±0,09	1, 9, 11, 13, 15, 16, 18
Settori d'applicazione: 3 Bevande 7 Controllo delle procedure di 11 Ambiente 15 Acque minerali disinfezione	3,3'-dimetilnaftidina		•	100, 50		7, 9, 13, 15
disinfezione	DPD	-	10	10, 20, 50	±0,047	5, 7, 9, 17, 18
disinfezione	Settori d'applicazione: 3		dure di 11	Ambiente		15 Acque minerali
4 Biotecnologia, fermentatori 8 Acque di drenaggio 12 Analisi degli alimenti 16 Acque di mare					enti	
1 Agricoltura 5 Acque di riscaldamento / Acque di 9 Acque potabili 13 Acque freatiche, acque di 17 Piscine						
2 Acquacoltura 6 Materiali edili 10 Finitura delle superfici mediante 14 Prodotti lattiero-caseari 18 Acque reflue galvanoplastica		raffreddamento Materiali edili 10 Finitura delle superfi		superficie		

Parametri C

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
C	Cadmio, kit ^{c)}	0,0020 - 0,500	0,0020 - 0,500 •	5 – 500 μg/L	5 – 500 μg/L	Cd	55	1.01745.0001
	Cadmio, kit in cuvetta ^{C)}	0,025 - 1.000	0,025 - 1.000	25 – 1.000 μg/L	25 - 1.000 μg/L	Cd	25	1.14834.0001
	Calcio, kit	0,20 - 4,00	0,20 - 4,00	-	-	Ca	100	1.00049.0001
	Calcio, kit	1,0 - 15,0 1,4 - 21,0 2,5 - 37,5 5 - 160 7 - 224 12 - 400	1,0 - 15,0 1,4 - 21,0 2,5 - 37,5 5 - 160 7 - 224 12 - 400	5 - 160 7 - 224 13 - 400	5 - 160 7 - 224 13 - 400	Ca CaO CaCO ₃ Ca CaO CaCO ₃	100	1.14815.0001
	Calcio, kit in cuvetta	10 - 250 14 - 350 25 - 624	10 - 250 14 - 350 25 - 624	10 - 250 14 - 350 25 - 625	10 - 250 14 - 350 25 - 625	Ca CaO CaCO ₃	25	1.00858.0001
	Capacità acida fino a pH 4,3 (alcalinità totale), kit in cuvetta 1) A)	0,40 - 8,00 mmol/L 20 - 400	0,40 - 8,00 mmol/L 20 - 400	0,40 - 8,00 mmol/L 20 - 400	0,40 - 8,00 mmol/L 20 - 400	CaCO ₃	120	1.01758.0001
	Carboidrazide							
	Carbonio organico, totale							
	Cianuri (cianuri liberi e prontamente rilasciabili), kit	0,0020 - 0,500	0,0020 - 0,500 •	5 – 200 μg/L	5 – 200 μg/L	CN	100	1.09701.0001
Approvato USEPA	Cianuri (cianuri liberi e prontamente rilasciabili), kit in cuvetta ^{B.1)}	0,010 - 0,500	0,010 - 0,500	10 – 350 μg/L	10 – 350 μg/L	CN	25	1.14561.0001
	Cianuri (cianuri liberi), kit in cuvetta	0,010 - 0,500	0,010 - 0,500	10 - 350 μg/L	10 - 350 μg/L	CN	25	1.02531.0001
Approvato USEPA	Cloro (cloro libero), kit ^{B.2)}	0,010 - 6,00	0,010 - 6,00 •	0,02 - 6,00	0,02 - 6,00	Cl ₂	200 1.200	1.00598.0002 1.00598.0001
Approvato USEPA	Cloro (cloro libero), kit in cuvetta ^{A) B.2)}	0,03 - 6,00	0,03 - 6,00	0,05 - 5,00	0,05 - 5,00	Cl ₂	200	1.00595.0001
Approvato USEPA	Cloro (cloro libero), kit ^{B.3)}	0,010 - 6,00	0,010 - 6,00 •	0,02 - 6,00	0,02 - 6,00	Cl ₂	200 1.200	1.00602.0001 1.00602.0002
Approvato USEPA	Cloro, kit 100 saggi per cloro libero + 100 saggi per cloro (totale) ^{B.3)}	0,010 - 6,00	0,010 - 6,00 •	0,02 - 6,00	0,02 - 6,00	Cl ₂	200	1.00599.0001
Approvato USEPA	Cloro, kit in cuvetta A) 100 saggi per cloro libero + 100 saggi per cloro (totale) B.3)	0,03 - 6,00	0,03 - 6,00	0,05 - 5,00	0,05 - 5,00	Cl ₂	200	1.00597.0001
	Cloro, reagente Cl ₂ -1 (liquido) ^{F)}	0,03 - 6,00	0,03 - 6,00	0,02 - 6,00	0,02 - 6,00	Cl ₂	200	1.00086.0001
	Cloro, reagente Cl ₂ -2 (liquido) ^{F)}	0,03 - 6,00	0,03 - 6,00	0,02 - 6,00	0,02 - 6,00	Cl ₂	400	1.00087.0001
	Cloro, reagente Cl ₂ -3 (liquido) ^{F)}	0,03 - 6,00	0,03 - 6,00	0,02 - 6,00	0,02 - 6,00	Cl ₂	600	1.00088.0001
	Cuvette e accessori per la determinazione fotometrica del cloro con i reagenti liquidi 1.00086, 1.00087 e 1.00088	-	-	-	-	Cl ₂	25	1.00089.0001

A. Il kit in cuvetta contiene tre cuvette da 16 mm con etichetta con codice a barre. Dopo una misurazione è possibile svuotare le cuvette e lavarle per le misurazioni successive. | B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | F. Combinazione per cloro libero o totale; vedere commento di cuvette e accessori N° Cat. 1.00089.0001. | • Solo con NOVA 60

Metodo	Riferimenti a norme e standaro	d / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Derivato del cadion	-		0,2 + 1,0 + 10	10, 20, 50	±0,0039	5, 8, 9, 10, 11, 13, 15, 18
Derivato del cadion	-		0,2 + 5,0	-	±0,025	5, 8, 9, 10, 11, 13, 15, 18
Derivato della ftaleina	-		0,5 + 5,0	10	±0,11	2, 3, 5, 9, 11, 12, 13
Gliossale-bis-idrossianile	Per determinazioni nella parte di misura vedere il manuale No		0,5 + 5,0 0,10 + 5,0	10, 20	±1,8 ±3	1, 2, 5, 6, 9, 13, 15, 16,
Porpora di ftaleina	-		0,5 + 1,0	-	±9	1, 2, 5, 6, 9, 13, 15
Indicatore	-		4,0 + 1,0 + 0,5	-	±0,29 mmol/L	2, 5, 9, 10, 11, 13, 15, 18
	Vedere "Sequestranti dell'ossig	eno, kit"				
	Vedere TOC					
Acido barbiturico, acido piridincarbossilico	Analogo a EPA 335.2, APHA 45 ASTM D2036-09D, ISO 6703, I		5,0 + 10	10, 20, 50	±0,0025	8, 9, 10, 11, 13, 15, 18
Acido barbiturico, acido piridincarbossilico	Analogo a EPA 335.2, APHA 45 ASTM D2036-09D, ISO 6703, I		5,0 + 10	-	±0,013	8, 9, 10, 11, 13, 15, 18
Acido barbiturico, acido piridincarbossilico	Analogo a EPA 335.2, APHA 45 ASTM D2036-09D, ISO 6703, I		5,0	-	±0,013	8, 9, 10, 11, 13, 15, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	00-Cl ₂ G,	10	10, 20, 50	±0,034	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	00-Cl ₂ G,	5,0	-	±0,15	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	000-Cl ₂ G,	10	10, 20, 50	±0,032	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	00-Cl ₂ G,	10	10, 20, 50	±0,032	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	00-Cl ₂ G,	5,0	-	±0,11	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	00-Cl ₂ G,	10	16, 50	±0,036	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	000-Cl ₂ G,	10	16, 50	±0,036	2, 5, 7, 9, 13, 17, 18
DPD	Analogo a EPA 330.5, APHA 45 DIN EN ISO 7393-2	000-Cl ₂ G,	10	16, 50	±0,036	2, 5, 7, 9, 13, 17, 18
DPD	Materiale aggiuntivo necessario Reagenti per cloro Cl ₂ -1, Cl ₂ -2, cloro libero: Cl ₂ -1 e Cl ₂ -2 per cloro totale: Cl ₂ -1, Cl ₂ -2 e C Intervallo di misura del NOVA 30	3	-	-	-	
Settori d'applicazione: 3	Bevande	7 Controllo delle proced	lure di 11	Ambiente		15 Acque minerali
4	Biotecnologia, fermentatori	disinfezione 8 Acque di drenaggio	12	Analisi degli alim	enti	16 Acque di mare
1 Agricoltura 5	Acque di riscaldamento / Acque di	9 Acque potabili	13		acque di	17 Piscine
2 Acquacoltura 6	raffreddamento	10 Finitura delle superfice	i mediante 14	superficie	·	18 Acque reflue
		galvanoplastica	1			,,
						63

Parametri C

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
C	Clorofilla a e feofitina a	-	-	-	-	Clo-a Feo	-	-
	Clorofilla a, b, c	-	-	-	-	Clo-a Clo-b Clo-c	-	-
	Cloruri, kit	0,10 - 5,00	0,10 - 5,00	0,50 - 5,00	0,50 - 5,00	Cl	100	1.01807.0001
	Cloruri, kit in cuvetta	0,5 - 15,0	0,5 - 15,0	0,5 - 15,0	0,5 - 15,0	Cl	25	1.01804.0001
	Cloruri, kit	2,5 - 250	2,5 - 250 •	10 - 250	10 - 250	Cl	100 175	1.14897.0001 1.14897.0002
	Cloruri, kit in cuvetta	5 - 125	5 - 125	5 - 125	5 - 125	Cl	25	1.14730.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	4,0 - 40,0	4,0 - 40,0	-	-	COD	25	1.14560.0001
Approvato USEPA	COD, kit in cuvetta	5,0 - 80,0	5,0 - 80,0	5,0 - 80,0	5,0 - 80,0	COD	25	1.01796.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	10 - 150	10 - 150	10 - 150	10 - 150	COD	25	1.14540.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	15 - 300	15 - 300	15 – 300	15 - 300	COD	25	1.14895.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	25 - 1.500	25 - 1.500	25 - 1.500	25 - 1.500	COD	25	1.14541.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	50 - 500	50 - 500	50 - 500	50 - 500	COD	25	1.14690.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	300 - 3.500	300 - 3.500	300 - 3.500	300 - 3.500	COD	25	1.14691.0001
Approvato USEPA	COD, kit in cuvetta ^{B.1)}	500 - 10.000	500 - 10.000	500 - 10,000	500 - 10,000	COD	25	1.14555.0001
Approvato USEPA	COD, kit in cuvetta	5.000 - 90.000	5.000 - 90.000	5.000 - 90.000	5.000 - 90.000	COD	25	1.01797.0001
Approvato USEPA	COD, kit in cuvetta per acque di mare/ad alto contenuto di cloruri	5,0 - 60,0	5,0 - 60,0	5,0 - 60,0	5,0 - 60,0	COD	25	1.17058.0001
Approvato USEPA	COD, kit in cuvetta per acque di mare/ad alto contenuto di cloruri	50 - 3.000	50 - 3.000	50 - 3.000	50 - 3.000	COD	25	1.17059.0001
	COD, kit in cuvetta per acque di mare/ad alto tenore di cloruri: tubo di assorbimento	-	-	-	-		1 pezzo	1.15955.0001

B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | C. Per la determinazione del contenuto totale di questo parametro utilizzare uno dei Crack Set prima della procedura fotometrica; vedere pagina 51. | • Solo con NOVA 60

non ha un fotometro spectroquant®?

Per usare i kit analitici Spectroquant® con fotometri di altre case, scarichi i dati di programmazione disponibili gratuitamente nel sito web: www.service-test-kits.com

Metodo	Riferimenti a norme e standard		Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
-	Applicazione per Prove, analoga 10200 H, ASTM D3731-87, DIN 10260		-	10, 20, 50	-	1, 2, 13
Metodo tricromatico	Applicazione per Prove, analoga 10200 H, ASTM D3731-87	a a APHA -	-	10, 50	-	1, 2, 13
Tiocianato di ferro (III)	Analogo a EPA 325.1, APHA 450	00-Cl ⁻ E (0,20 + 10	50	±0,10	2, 5, 6, 9, 12, 13, 15, 18
Tiocianato di ferro (III)	Analogo a EPA 325.1, APHA 450	00-Cl ⁻ E (0,25 + 10	-	±0,3	2, 5, 6, 9, 12, 13, 15, 18
Tiocianato di ferro (III)	Analogo a EPA 325.1, APHA 450		1,0 + 5,0 + 0,5 + 2,5	10	±1,0	1, 2, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18
Tiocianato di ferro (III)	Analogo a EPA 325.1, APHA 450	00-Cl ⁻ E	0,5 + 1,0	-	±5	1, 2, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	3,0	-	±1,5	2, 5, 6, 9, 11, 13, 15, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	2,0	-	±1,8	2, 6, 5, 9, 11, 13, 15, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	3,0	-	±7	2, 5, 6, 11, 13, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	2,0	-	±8	2, 5, 6, 11, 13, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D, :	3,0	-	±29	2, 8, 10, 11, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	2,0	-	±13	2, 8, 10, 11, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D, 2	2,0	-	±63	8, 10, 11, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D,	1,0	-	±143	1, 3, 8, 10, 11, 12, 14, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	Analogo a EPA 410.4, APHA 522 ASTM D1252-06B, ISO 15705	20 D, (0,1	-	±1.151	1, 3, 8, 10, 11, 12, 14, 16, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Il metodo della deplezione dei c corrisponde al DIN 38409-41-2 corrisponde al DIN ISO 15705, 410.4, APHA 5220 D e ASTM DI	l; il metodo analogo a EPA	20 + 25 + 5,0	-	±3,0	2, 3, 4, 6, 8, 10, 11, 13, 16, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	Il metodo della deplezione dei c corrisponde al DIN 38409-41-2 corrisponde al DIN ISO 15705, EPA 410.4, APHA 5220 D e AST	2; il metodo analogo a	20 + 25 + 3,0	-	±44	2, 3, 4, 6, 8, 10, 11, 13, 16, 18
-	Materiale aggiuntivo necessario cuvetta del COD di acque di ma tenore di cloruri	•	-	-	-	
Settori d'applicazione: 3 Bevande		rollo delle procedure fezione	di 11 .	Ambiente		15 Acque minerali
4 Biotecnologi		e di drenaggio	12	Analisi degli aliment	i	16 Acque di mare
1 Agricoltura 5 Acque di ris raffreddame		e potabili		Acque freatiche, acq superficie	μue di	17 Piscine
2 Acquacoltura 6 Materiali ed		ıra delle superfici me ınoplastica	diante 14	Prodotti lattiero-case	eari	18 Acque reflue

Parametri C

		Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
	C	COD, kit in cuvetta di acque di mare/ ad alto tenore di cloruri: calce sodata	-	-	-	-		500 g 2.500 g	1.06733.0501 1.06733.2500
		COD, kit in cuvetta di acque di mare/ ad alto tenore di cloruri: ac. solforico per la deter. del COD	-	-	-	-		1 L	1.17048.1000
App US	rovato SEPA	COD, kit in cuvetta (senza Hg)	10 - 150	10 - 150	10 - 150	10 - 150	COD	25	1.09772.0001
App US	rovato SEPA	COD, kit in cuvetta (senza Hg)	100 - 1.500	100 - 1.500	100 - 1.500	100 - 1.500	COD	25	1.09773.0001
		Coefficiente di assorbimento spettrale, Colore	0,1 - 250 m ⁻¹	-	-	-	-	-	-
		Coefficiente di attenuazione spettrale	0,5 - 250 m ⁻¹	-	-	-	-	-	-
		Colore, ADMI	2,0 - 500	-	-	-	-	-	-
		Colore, coefficiente di assorbimento spettrale	0,1 - 250 m ⁻¹	0,1 - 50,0 m ⁻¹ •	-	-	-	-	-
	Colore, colore reale	2 - 2.500	-	-	-	Pt, Pt/Co, CU	-	-	
	Colore, Hazen	0,2 - 500	0,2 - 500 •	-	-	Pt, Pt/Co, Hazen, CU	-	-	
		Colore, Hazen	0 - 1.000 (a 445, 455, 465 nm)	0 - 1.000 • (a 445 nm)	0 - 1.000 (a 430 nm)	25 - 1.000 (a 430 nm)	Pt, Pt/Co, Hazen, CU	-	-

B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | C. Per la determinazione del contenuto totale di questo parametro utilizzare uno dei Crack Set prima della procedura fotometrica; vedere pagina 51. | • Solo con NOVA 60

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
-	Materiale aggiuntivo necessario per kit in cuvetta del COD di acque di mare/ad alto tenore di cloruri	-	-	-	
-	Materiale aggiuntivo necessario per kit in cuvetta del COD di acque di mare/ad alto tenore di cloruri	-	-	-	
Ossidazione con acido cromosolforico, determinazione come cromati	-	2,0	-	±8	9, 11, 13, 18
Ossidazione con acido cromosolforico, determinazione come cromo (III)	-	2,0	-	±32	11, 18
-	Vedere Colore, coefficiente di assorbimento spettrale	-	-		
-	Determinazione fisica secondo DIN 38404, a 254 nm	-	10, 20, 50	-	
Colorazione propria	Determinazione fisica, analoga a APHA 2120 F	-	10, 50	-	
Colorazione propria	Determinazione fisica secondo EN ISO 7887, a 445, 525 e 620 nm con NOVA 60, a 436, 525 e 620 nm con Prove 100/300/600	-	10, 20, 50	-	
Colorazione propria	Determinazione fisica secondo EN ISO 7887, a 410 nm	_	10, 20, 50	-	
Colorazione propria	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2, a 340 nm	-	10, 20, 50	-	
Colorazione propria	Determinazione fisica, corrisponde a APHA 2120 B, DIN EN ISO 6271-2	-	50	-	

analisi del cod

Analizza il COD in acque o acque reflue? I nostri nove kit in cuvetta per il COD coprono l'intero intervallo di misura da 4,0 a 90.000 mg/L. Ottenga i risultati senza errore, rapidamente e senza dover diluire i campioni.

Settori d'applicazione:

- 3 Bevande
- Biotecnologia, fermentatori
- Agricoltura
- Acquacoltura
- Acque di riscaldamento / Acque di raffreddamento
- Materiali edili

- Controllo delle procedure di disinfezione
- Acque di drenaggio Acque potabili
- Finitura delle superfici mediante galvanoplastica
- Ambiente 11
- Acque minerali
- Analisi degli alimenti
- Acque di mare

Acque reflue

- Acque freatiche, acque di superficie 13
- 17 Piscine
- Prodotti lattiero-caseari

Parametri C-F

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
C	Cromati, kit [©] per la determinazione del cromo (VI)	0,010 - 3,00 0,02 - 6,69	0,010 - 3,00 • 0,02 - 6,69	10 – 1.400 μg/L 22 – 3.123 μg/L	10 – 1.400 μg/L 22 – 3.123 μg/L	Cr CrO ₄	250	1.14758.0001
Approvato USEPA	Cromati, kit in cuvetta per la determinazione del cromo (VI) e del cromo (totale) ^{B,1}	0,05 - 2,00 0,11 - 4,46	Cr CrO ₄	25	1.14552.0001			
	Cromo nei bagni galvanici (colore intrinseco)	4,0 - 400 g/L	4,0 - 400 g/L	-	-	CrO ₃	-	-
D	DEHA (Dietilidrossilammina)							
	Detergenti							
	Domanda chimica di ossigeno							
	Domanda di ossigeno, biologica							
	Durezza residua, kit in cuvetta	0,50 - 5,00 0,070 - 0,700 0,087 - 0,874 0,12 - 1,25 0,70 - 7,00 1,2 - 12,5	0,50 - 5,00 0,070 - 0,700 0,087 - 0,874 0,12 - 1,25 0,70 - 7,00 1,2 - 12,5	0,50 - 5,00 0,070 - 0,700 0,087 - 0,874 0,12 - 1,25 0,70 - 7,00 1,2 - 12,5	0,50 - 5,00 0,070 - 0,700 0,087 - 0,874 0,12 - 1,25 0,70 - 7,00 1,2 - 12,5	Ca °d °e °f CaO CaCO ₃	25	1.14683.0001
	Durezza totale, kit in cuvetta	5 - 215 0,7 - 30,1 0,9 - 37,6 1,2 - 53,7 7 - 301 12 - 537	5 - 215 0,7 - 30,1 0,9 - 37,6 1,2 - 53,7 7 - 301 12 - 537	5 - 215 0,7 - 30,1 0,9 - 37,6 1,2 - 53,7 7 - 301 12 - 537	5 - 215 0,7 - 30,1 0,9 - 37,6 1,2 - 53,7 7 - 301 12 - 537	Ca °d °e °f CaO CaCO ₃	25	1.00961.0001
F	Fenolo, kit	0,002 - 0,100 0,025 - 5,00	0,002 - 0,100 • 0,025 - 5,00 •	0,10 - 5,00	0,10 - 5,00	Fenolo	50 - 250	1.00856.0001
	Fenolo, kit in cuvetta	0,10 - 2,50	0,10 - 2,50 •	0,10 - 2,50	0,10 - 2,50	Fenolo	25	1.14551.0001
	Feofitina a e clorofilla a							
	Ferro, kit ^{C)}	0,0005 - 0,0100 ^{D)} 0,0025 - 5,00 ^{D)} 0,005 - 5,00	0,005 - 5,00 •	0,01 - 2,00	0,01 - 2,00	Fe	250 1.000	1.14761.0002 1.14761.0001
	Ferro, kit ^{c)}	0,010 - 5,00	0,010 - 5,00 •	0,10 - 5,00	0,10 - 5,00	Fe	150	1.00796.0001
	Ferro, kit in cuvetta ^{c)}	0,05 - 4,00	0,05 - 4,00	0,05 - 4,00	0,05 - 4,00	Fe	25	1.14549.0001
	Ferro, kit in cuvetta ^{C)}	1,0 - 50,0	1,0 - 50,0	-	-	Fe	25	1.14896.0001
	Fluoruri, kit in cuvetta	0,025 - 0,500 0,10 - 1,80	0,025 - 0,500 • 0,10 - 1,80 •	0,10 - 1,80	0,10 - 1,80	F	25	1.00809.0001
	Fluoruri, kit	0,02 - 2,00	0,02 - 2,00 •	0,08 - 2,00	0,08 - 2,00	F	250	1.00822.0250
	Fluoruri, kit	0,10 - 20,0	0,10 - 20,0 •	0,10 - 2,00	0,10 - 2,00	F	100 250	1.14598.0001 1.14598.0002

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Difenilcarbazide	Analogo a APHA 3500-Cr B, DIN 38405-24	5,0	10, 20, 50	±0,012	2, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18
Difenilcarbazide	Analogo a APHA 3500-Cr B, DIN 38405-24	5,0 (+10)	-	±0,04	2, 5, 6, 8, 10, 11, 13, 14, 16, 18
-	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	5,0 + 4,0	10, 20, 50	-	10
	Vedere "Sequestranti dell'ossigeno, kit"				
	Vedere Tensioattivi				
	Vedere COD				
	Vedere BOD				
Porpora di ftaleina	_	0,2 + 4,0	-	±0,14	2, 5, 9
Porpora di ftaleina	-	1,0	-	±8	2, 9, 13, 15
4-amminoantipirina	Analogo a EPA 420.1, ASTM D1783-01, APHA 5530 C + D, ISO 6439	5,0 + 10 1,0 + 10	20 10, 20, 50	±0,004 ±0,027	8, 9, 11, 13, 16, 18
МВТН		10	-	±0,11	8, 11, 13, 16, 18
	Vedere clorofilla a e feofitina a				1, 2, 13
Triazina	-	5,0	100 100 10, 20, 50	±0,014	1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18
1,10-fenantrolina	Distingue Fe(II) e Fe(III), analogo a APHA 3500-Fe B, DIN 38406-1	0,5 + 8,0	10, 20, 50	±0,024	1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18
Triazina	-	5,0	-	±0,06	1, 2, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18
2,2'-bipiridina	Distingue Fe(II) e Fe(III)	1,0	-	±0,9	6, 8, 10, 11, 13, 18
Porpora di ftaleina	Analogo a EPA 340.3, APHA 4500-F E. Per determinazioni nella parte inferiore dell'intervallo di misura vedere il manuale NOVA / Prove	10 5,0	50 -	±0,024 ±0,06	9, 10, 11, 13, 15, 18
Metodo SPADNS	Analogo a APHA 4500-F ⁻ D	5,0 + 1,0	50	±0,04	8, 9, 10, 11, 13, 15, 16, 18
Porpora di ftaleina	Analogo a EPA 340.3, APHA 4500-F ⁻ E	0,5 + 2,0 + 5,0	10	±0,12	9, 10, 11, 13, 15, 16, 18

Controllo delle procedure di disinfezione

Finitura delle superfici mediante galvanoplastica

Acque di drenaggio

Acque potabili

11 Ambiente

Analisi degli alimenti

Acque freatiche, acque di superficie Prodotti lattiero-caseari

12

13

14

Settori d'applicazione:

1 Agricoltura

2 Acquacoltura

3 Bevande

Biotecnologia, fermentatori

 Acque di riscaldamento / Acque di raffreddamento
 Materiali edili 15 Acque minerali

Piscine

18 Acque reflue

17

Acque di mare

Parametri F-M

	Parametro	Intervallo di misura Prove 100/300/600		ectroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalog
F	Formaldeide, kit	0,02 - 8,00	0,02 - 8,00 •	-	-	НСНО	100	1.14678.00
F	Formaldeide, kit in cuvetta	0,10 - 8,00	0,10 - 8,00	-	-	НСНО	25	1.14500.00
F	Fosfati (orto-fosfati), kit [©]	0,0025 - 5,00 0,0077 - 15,30 0,0057 - 11,46 0,0005 - 0,0250 D) 0,0015 - 0,0767 D) 0,0007 - 0,0335 D)	0,010 - 5,00 • 0,03 - 15,3 • 0,02 - 11,46 •	0,01 - 2,50 0,03 - 7,66 0,02 - 5,73	0,01 - 2,50 0,03 - 7,66 0,02 - 5,73	PO ₄ -P PO ₄ P ₂ O ₅ PO ₄ -P PO ₄ P ₂ O ₅	220 420	1.14848.00 1.14848.00
	Fosfati (orto-fosfati), kit in cuvetta	0,05 - 5,00 0,2 - 15,3 0,11 - 11,46	0,05 - 5,00 0,2 - 15,3 0,11 - 11,46	0,05 - 4,00 0,15 - 12,26 0,11 - 9,17	0,05 - 4,00 0,15 - 12,26 0,11 - 9,17	PO ₄ -P PO ₄ P ₂ O ₅	25	1.00474.00
	Fosfati (orto-fosfati e fosforo totale), kit in cuvetta ^{B.3)}	0,05 - 5,00 0,2 - 15,3 0,11 - 11,46	0,05 - 5,00 0,2 - 15,3 0,11 - 11,46	0,05 - 4,00 0,15 - 12,26 0,11 - 9,17	0,05 - 4,00 0,15 - 12,26 0,11 - 9,17	PO ₄ -P PO ₄ P ₂ O ₅	25	1.14543.00
	Fosfati (orto-fosfati), kit in cuvetta	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 20,0 1,5 - 61,3 1,1 - 45,8	0,5 - 20,0 1,5 - 61,3 1,1 - 45,8	PO ₄ -P PO ₄ P ₂ O ₅	25	1.00475.00
	Fosfati (orto-fosfati e fosforo totale), kit in cuvetta ^{B.3)}	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 20,0 1,5 - 61,3 1,1 - 45,8	0,5 - 20,0 1,5 - 61,3 1,1 - 45,8	PO ₄ -P PO ₄ P ₂ O ₅	25	1.14729.00
	Fosfati (orto-fosfati), kit in cuvetta	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	0,5 - 25,0 1,5 - 76,7 1,1 - 57,3	PO ₄ -P PO ₄ P ₂ O ₅	25	1.14546.00
F	Fosfati (orto-fosfati), kit	0,5 - 30,0 1,5 - 92,0 1,1 - 68,7	0,5 - 30,0 • 1,5 - 92,0 • 1,1 - 68,7 •	0,5 - 30,0 1,5 - 92,0 1,1 - 68,7	0,5 - 30,0 1,5 - 92,0 1,1 - 68,7	PO ₄ -P PO ₄ P ₂ O ₅	400	1.14842.00
F	Fosfati (orto-fosfati), kit	1,0 - 100,0 3 - 307 2 - 229	1,0 - 100,0 • 3 - 307 • 2 - 229 •	1,0 - 60,0 3,1 - 184 2,3 - 137,5	1,0 - 60,0 3,1 - 184 2,3 - 137,5	PO ₄ -P PO ₄ P ₂ O ₅	100	1.00798.00
	Fosfati (orto-fosfati), kit in cuvetta	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	PO ₄ -P PO ₄ P ₂ O ₅	25	1.00616.00
	Fosfati (orto-fosfati e fosforo totale), kit in cuvetta	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	3,0 - 100,0 9 - 307 7 - 229	PO ₄ -P PO ₄ P ₂ O ₅	25	1.00673.00
1	Idrazina, kit	0,005 - 2,00	0,005 - 2,00 •	10 – 1.200 μg/L	10 - 1.200 μg/L	N_2H_4	100	1.09711.00
1	Idrochinone							
1	Iodio, kit	0,050 - 10,00	0,050 - 10,00	0,10 - 5,00	0,10 - 5,00	I_2	200	1.00606.00
1	Magnesio, kit in cuvetta	5,0 - 75,0	5,0 - 75,0	5,0 - 75,0	5,0 - 75,0	mg	25	1.00815.00
ſ	Manganese, kit	0,005 - 2,00	0,005 - 2,00 •	0,05 - 1,80	0,05 - 1,80	Mn	250	1.01846.00
	Manganese, kit	0,010 - 10,00	0,010 - 10,00 •	0,05 - 6,00	0,05 - 6,00	Mn	250 500	1.14770.00 1.14770.00
	Manganese, kit in cuvetta	0,10 - 5,00	0,10 - 5,00	0,10 - 5,00	0,10 - 5,00	Mn	25	1.00816.00
1	Mercurio	0,025 - 1,000	0,025 - 1,000	-	-	Hg	-	-

ossima)

B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | C. Per la determinazione del contenuto totale di questo parametro utilizzare uno dei Crack Set prima della procedura fotometrica; vedere pagina 51. | • Solo con NOVA 60

Ha difficoltà con la preparazione dei campioni per l'analisi dei nitrati nel suolo? Consulti i nostri bollettini applicativi in

www.merckmillipore.com/aaf > Photometry

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Acido cromotropico	-	3,0 + 4,5	10, 20, 50	±0,03	7, 9, 10, 11, 15, 18
Acido cromotropico	-	2,0	-	±0,18	7, 9, 10, 11, 15, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	5,0	10, 20, 50	±0,015	1, 2, 5, 9, 11, 13, 15, 16, 18
			100		
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	5,0	-	±0,08	1, 2, 5, 9, 11, 13, 15, 16, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	5,0	-	±0,06	1, 2, 5, 9, 11, 13, 15, 16, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	1,0	-	±0,5	1, 2, 4, 8, 11, 13, 16, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	1,0	-	±0,4	1, 2, 4, 8, 11, 13, 16, 18
Vanadato-molibdato	Analogo a APHA 4500-P C	5,0	-	±0,4	5, 16
Vanadato-molibdato	Analogo a APHA 4500-P C	1,2 + 5,0	10, 20	±0,2	5, 16
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	0,5 + 8,0	10	±1,4	1, 2, 4, 8, 11, 12, 13, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	0,2	-	±1,2	1, 4, 8, 11, 13, 16, 18
Blu di fosfomolibdeno	Analogo a EPA 365.2+3, APHA 4500-P E, DIN EN ISO 6878	0,2	-	±1,4	1, 4, 8, 11, 13, 16, 18
4-(dimetilammino)-benzaldeide	Analogo a DIN 38413-1	2,0 + 5,0	10, 20, 50	±0,007	5
	Vedere "Sequestranti dell'ossigeno, kit"				
DPD	-	10	10, 20, 50	±0,060	7, 9, 17
Porpora di ftaleina	-	1,0	-	±4,0	1, 2, 9, 10, 15, 18
PAN	-	8,0 + 2,0 + 0,25	10, 20, 50	±0,007	1, 2, 9, 10, 13, 15
Formaldossima	Analogo a DIN 38406-2	5,0	10, 20, 50	±0,035	1, 2, 9, 10, 13, 15, 18
Formaldossima	Analogo a DIN 38406-2	7,0	-	±0,08	1, 2, 10, 13, 18
Tiochetone di Michler	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	2,5 + 5,0 + 1,0 + 1,5	50	-	11, 18
	Vedere "Sequestranti dell'ossigeno, kit"				
Settori d'applicazione: 3 Bevande	7 Controllo delle proced disinfezione	ure di 11	Ambiente		15 Acque minerali

Settori d'applicazione:

- 3 Bevande
 - Biotecnologia, fermentatori
- Agricoltura
- 2 Acquacoltura
- Acque di riscaldamento / Acque di raffreddamento
- 6 Materiali edili
- Controllo delle procedure di disinfezione
- 8 Acque di drenaggio
- Acque potabili
- Finitura delle superfici mediante galvanoplastica 10
- Ambiente
- 12 Analisi degli alimenti
- Acque freatiche, acque di superficie Prodotti lattiero-caseari 14
- Acque di mare
- Piscine
- Acque reflue

Parametri M-N

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
M	Misurazione del colore ADMI							
	Molibdeno, kit in cuvetta	0,02 - 1,00 0,03 - 1,67 0,04 - 2,15	0,02 - 1,00 • 0,03 - 1,67 • 0,04 - 2,15 •	0,02 - 1,00 0,03 - 1,67 0,04 - 2,15	0,02 - 1,00 0,03 - 1,67 0,04 - 2,15	Mo MoO ₄ ²⁺ Na ₂ MoO ₄	25	1.00860.0001
	Monoclorammina, kit	0,050 - 10,00 0,036 - 7,26 0,010 - 1,98	0,050 - 10,00 • 0,036 - 7,26 • 0,010 - 1,98 •	0,10 - 5,00 0,07 - 3,63 0,02 - 0,99	0,10 - 5,00 0,07 - 3,63 0,02 - 0,99	Cl ₂ NH ₂ Cl NH ₂ Cl-N	150	1.01632.0001
N	Nichel, kit ^{c)}	0,02 - 5,00	0,02 - 5,00 •	0,05 - 5,00	0,05 - 5,00	Ni	250	1.14785.0001
	Nichel, kit in cuvetta ^{C)}	0,10 - 6,00	0,10 - 6,00	0,10 - 6,00	0,10 - 6,00	Ni	25	1.14554.0001
	Nichel nei bagni galvanici (colore intrinseco)	2,0 - 120 g/L	2,0 - 120 g/L	-	-	Ni	-	-
	Nitrati (UV)	0,0 - 7,0	-	-	-	NO ₃ -N	-	-
Approvato USEPA	Nitrati, kit ^{B.3) C)}	0,10 - 25,0 0,4 - 110,7	0,10 - 25,0 • 0,4 - 110,7 •	-	-	NO ₃ -N NO ₃	100 250	1.09713.0001 1.09713.0002
Approvato USEPA	Nitrati, kit ^{B.3) C)}	0,2 - 20,0 0,89 - 88,5	0,2 - 20,0 • 0,89 - 88,5 •	0,5 - 15,0 2,2 - 66,4	0,5 - 15,0 2,2 - 66,4	NO ₃ -N NO ₃	100	1.14773.0001
Approvato USEPA	Nitrati, kit ^{B.3) C)}	0,3 - 30,0 1,3 - 132,8	0,3 - 30,0 • 1,3 - 132,8 •	0,3 - 30,0 1,3 - 132,8	0,3 - 30,0 1,3 - 132,8	NO ₃ -N NO ₃	100	1.01842.0001
Approvato USEPA	Nitrati, kit in cuvetta ^{B.3) C)}	0,5 - 18,0 2,2 - 79,7	0,5 - 18,0 2,2 - 79,7	0,5 - 15,0 2,2 - 66,4	0,5 - 15,0 2,2 - 66,4	NO ₃ -N NO ₃	25	1.14542.0001
Approvato USEPA	Nitrati, kit in cuvetta ^{B.3) C)}	0,5 - 25,0 2,2 - 110,7	0,5 - 25,0 2,2 - 110,7	-	-	NO ₃ -N NO ₃	25	1.14563.0001
Approvato USEPA	Nitrati, kit in cuvetta ^{B.3) C)}	1,0 - 50,0 4 - 221	1,0 - 50,0 4 - 221	-	-	NO ₃ -N NO ₃	25	1.14764.0001
Approvato USEPA	Nitrati, kit in cuvetta ^{B.3)}	23 - 225 102 - 996	23 - 225 102 - 996	-	-	NO ₃ -N NO ₃	25	1.00614.0001
Approvato USEPA	Nitrati, kit in cuvetta per acque di mare	0,10 - 3,00 0,4 - 13,3	0,10 - 3,00 • 0,4 - 13,3 •	0,10 - 3,00 0,4 - 13,3	0,10 - 3,00 0,4 - 13,3	NO ₃ -N NO ₃	25	1.14556.0001
Approvato USEPA	Nitrati, kit per acque di mare	0,2 - 17,0 0,9 - 75,3	0,2 - 17,0 • 0,9 - 75,3 •	-	-	NO ₃ -N NO ₃	50	1.14942.0001
Approvato USEPA	Nitriti, kit ^{B.3)}	0,002 - 1,00 0,007 - 3,28	0,002 - 1,00 • 0,007 - 3,28 •	5 – 400 μg/L 16 – 1.313 μg/L	5 – 400 μg/L 16 – 1.313 μg/L	NO ₂ -N NO ₂	335 1.000	1.14776.0002 1.14776.0001
Approvato USEPA	Nitriti, kit in cuvetta ^{B.3)}	0,010 - 0,700 0,03 - 2,30	0,010 - 0,700 0,03 - 2,30	10 - 700 μg/L 33 - 2.299 μg/L	10 – 700 μg/L 33 – 2.299 μg/L	NO ₂ -N NO ₂	25	1.14547.0001
Approvato USEPA	Nitriti, kit in cuvetta ^{B.3)}	1,0 - 90,0 3,0 - 295,2	1,0 - 90,0 3,3 - 295,2	1,0 - 90,0 3,3 - 295,2	1,0 - 90,0 3,3 - 295,2	NO ₂ -N NO ₂	25	1.00609.0001
	Numero del colore secondo Hazen (Pt/Co / APHA / Hazen)	0 - 1.000	0 - 1.000	0 - 1.000	25 - 1.000	Pt, Pt/Co, Hazen, CU		
	Numero di colore di iodio	0,010 - 50,0	0,010 - 50,0 •	-	-	IFZ	-	

A. Il kit in cuvetta contiene tre cuvette da 16 mm con etichetta con codice a barre. Dopo una misurazione è possibile svuotare le cuvette e lavarle per le misurazioni successive. | B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | C. Per la determinazione del contenuto totale di questo parametro utilizzare uno dei Crack Set prima della procedura fotometrica; vedere pagina 51. | D. Con Prove 600. | • Solo con NOVA 60

il codice QR per saperne di più.

Metodo	Riferimenti a norme e standard / Commo		/olume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
	Vedere Colore, ADMI					
Rosso bromopirogallolo	-	1	.0	-	±0,04	1, 5, 9, 13, 15, 18
Blu indofenolo	-	0),6 + 10	10, 20, 50	±0,033	7, 9, 17
Dimetilgliossima	-	5	5,0	10, 20, 50	±0,03	3, 5, 8, 9, 10, 11, 13, 15, 18
Dimetilgliossima	-	5	5,0	-	±0,11	3, 5, 8, 10, 11, 18
-	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	5	5,0	10, 20, 50	-	10
Misurazione diretta nell'interval- lo dell'UV	Applicazione su Prove 300, analoga a AP $4500-NO_3^-$ B, richiede cuvette di quarzo	PHA 5	50 + 1,0	10	-	9, 13
2,6-dimetilfenolo	Analogo a DIN 38405-9	0),5 + 4,0	10, 20, 50	±0,11	2, 6, 8, 9, 11, 13, 15, 17, 18
Nitrospettrale	-	1	.,5 + 5,0	10, 20	±0,31	2, 6, 9, 11, 13, 15, 17, 18
Riduzione con cadmio	-	1	.0	50	±1,2	1, 2, 6, 8, 9, 10, 11, 13, 15, 17, 18
Nitrospettrale	-	1	.,5	-	±0,5	1, 2, 6, 8, 9, 11, 13, 15, 17, 18
2,6-dimetilfenolo	Analogo a DIN 38405-9	1	.,0	-	±0,5	1, 2, 6, 9, 11, 13, 15, 17, 18
2,6-dimetilfenolo	Analogo a DIN 38405-9	0),5 + 1,0	-	±1,0	1, 2, 8, 9, 11, 13, 15, 18
2,6-dimetilfenolo	Analogo a DIN 38405-9	0),1 + 1,0	_	±5,0	1, 8, 11, 13, 18
Resorcinolo	-	2	2,0	_	±0,09	1, 2, 8, 9, 11, 13, 15, 16, 18
Resorcinolo	-	1	.,0 + 1,5 + 5,0	10	±0,4	1, 2, 8, 9, 11, 13, 15, 16, 18
Reazione di Griess	Analogo a EPA 354.1, APHA 4500-NO $_2^-$ B DIN EN 26777	3, 5	5,0	10, 20, 50	±0,005	2, 5, 8, 9, 10, 11, 13, 15, 16, 18
Reazione di Griess	Analogo a EPA 354.1, APHA 4500-NO $_2^-$ B DIN EN 26777	3, 5	5,0	-	±0,010	2, 5, 8, 9, 10, 11, 13, 15, 16, 18
Solfato di ferro	-	8	3,0	-	±2,6	5, 10, 13, 16, 18
Colorazione propria	Vedere Colore, Hazen	-	-	10, 20, 50	-	5, 9, 10, 11, 12, 13, 15, 18
Colorazione propria	Corrisponde al DIN 6162 A	-		10, 20, 50	-	3, 11, 12
Settori d'applicazione: 3 Bevande	7 Controllo del disinfezione	lle procedu	re di 11	Ambiente		15 Acque minerali
	logia, fermentatori 8 Acque di dre		12	-		16 Acque di mare
raffredda			13	superficie	•	17 Piscine
2 Acquacoltura 6 Materiali	edili 10 Finitura delle galvanoplast	e superfici i tica	mediante 14	Prodotti lattiero-	casearı	18 Acque reflue

Kit analitici Spectroquant®

Parametri O-S

	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ectroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
O	Oro, kit	0,5 - 12,0	0,5 - 12,0	-	-	Au	75	1.14821.0002
	Ossigeno, kit in cuvetta	0,5 - 12,0	0,5 - 12,0	0,5 - 12,0	0,5 - 12,0	0,	25	1.14694.0001
	Ozono, kit	0,010 - 4,00	0,010 - 4,00 •	0,02 - 4,00	0,02 - 4,00	O ₃	200 1.200	1.00607.0001 1.00607.0002
P	Palladio	0,05 - 1,25	0,05 - 1,25 •	-	-	Pd	-	-
	Perossido di idrogeno, kit	0,015 - 6,00	0,015 - 6,00 •	0,02 - 5,50	0,02 - 5,50	H ₂ O ₂	100	1.18789.0001
	Perossido di idrogeno, kit in cuvetta	2,0 - 20,0 0,25 - 5,00	2,0 - 20,0 • 0,25 - 5,00 •	-	-	H_2O_2 H_2O_2	25	1.14731.0001
	pH, kit in cuvetta ^{A)}	pH 6,4 - 8,8	pH 6,4 - 8,8	pH 6,4 - 8,8	pH 6,4 - 8,8	pН	280	1.01744.0001
	Piombo, kit ^{c)}	0,010 - 5,00	0,010 - 5,00 •	0,05 - 5,00	0,05 - 5,00	Pb	50	1.09717.0001
	Piombo, kit in cuvetta ^{C)}	0,10 - 5,00	0,10 - 5,00	0,10 - 5,00	0,10 - 5,00	Pb	25	1.14833.0001
	Platino	0,10 - 1,25	0,10 - 1,25 •	-	-	Pt	-	-
	Platino-cobalto, metodo standard							
	Potassio, kit in cuvetta	5,0 - 50,0	5,0 - 50,0	5,0 - 50,0	5,0 - 50,0	K	25	1.14562.0001
	Potassio, kit in cuvetta	30 - 300	30 - 300	30 - 300	30 - 300	K	25	1.00615.0001
	Proteine, kit	0,01 - 1,4 g/L	0,01 - 1,4 g/L	-	-	Proteine	200	1.10306.0500
	Proteine, kit	0,5 - 10 g/L	0,5 - 10 g/L	-	-	Proteine	250	1.10307.0500
R	Rame, kit ^{C)}	0,02 - 6,00	0,02 - 6,00 •	0,10 - 6,00	0,10 - 6,00	Cu	250	1.14767.0001
	Rame, kit in cuvetta ^{c)}	0,05 - 8,00	0,05 - 8,00	0,05 - 8,00	0,05 - 8,00	Cu	25	1.14553.0001
	Rame nei bagni galvanici (colore intrinseco)	2,0 - 80,0 g/L	2,0 - 80,0 g/L	-	-	Cu	-	-
S	SAC (coefficiente di assorbimento spettrale)	0,5 - 250 m ⁻¹	-	-	-	-	-	-
	Sequestranti dell'ossigeno, kit	0,020 - 0,500 0,027 - 0,667 0,05 - 1,32 0,08 - 1,95 0,09 - 2,17	0,020 - 0,500 • 0,027 - 0,667 • 0,05 - 1,32 • 0,08 - 1,95 • 0,09 - 2,17 •	0,020 - 0,500 0,027 - 0,667 0,053 - 1,315 0,078 - 1,950 0,087 - 2,170	0,020 - 0,500 0,027 - 0,667 0,053 - 1,315 0,078 - 1,950 0,087 - 2,170	DEHA Carboidr Idro- ch ISA MEKO	200	1.19251.0001

A. Il kit in cuvetta contiene tre cuvette da 16 mm con etichetta con codice a barre. Dopo una misurazione è possibile svuotare le cuvette e lavarle per le misurazioni successive. | B. Questo metodo è ufficialmente riconosciuto dall'USEPA come metodo alternativo per le indagini su 1. acque reflue, 2. acque potabili 3. acque potabili e acque reflue. | • Solo con NOVA 60

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	e Accu- ratezza [mg/L]	Settori d'applicazione
Rodamina B	_	20 + 60			10 12 16
		2,0 + 6,0	10	±0,4	10, 13, 16,
Metodo Winkler modifica	5	-	-	±0,3	2, 5, 11, 13, 17
DPD	Analogo a DIN 38408-3	10	10, 20, 50	±0,023	7, 9, 15, 17
Tiochetone di Michler	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	5,0 + 1,0 + 0,20	10	-	10, 18
Neocuproina	-	8,0 + 0,5	10, 20	±0,033	3, 7, 9, 11, 12, 13, 14, 15
Solfato di titanile	Analogo a DIN 38409-15. Per determinazioni nella parte inferiore dell'intervallo di misura vedere il manuale dello strumento	10 10	- 50	±0,9	3, 7, 9, 11, 12, 13, 14, 15, 18
Indicatore	-	10	-	± 0,1 pH	2, 5, 7, 9, 13, 15, 16, 17
PAR	-	0,5 + 8,0	10, 20, 50	±0,028	2, 5, 8, 9, 10, 11, 15, 18
PAR	-	5,0	-	±0,08	1, 2, 6, 9, 10, 12, 13, 15, 18
-	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	5,0 + 1,0 + 0,50	10	-	10, 18
	Vedere Colore				
Kalignost®, turbidimetric	co -	2,0	-	±2,2	9, 12, 13, 15, 16
Kalignost®, turbidimetric	:o –	0,5	-	±13	1, 16
Metodo di Bradford	Metodo non programmato nei fotometri	_	10	_	,
Metodo del biureto	Metodo non programmato nei fotometri	_	10	_	
Cuprizone	-	5,0	10, 20, 50	±0,034	1, 2, 5, 6, 8, 9, 10, 11, 13, 16, 18
Cuprizone	-	5,0	-	±0,13	1, 2, 5, 6, 8, 9, 10, 11, 13, 16, 18
-	Applicazione, ulteriori informazioni nei manuali Prove e NOVA	25 + 5,0	10, 20, 50		10
-	Determinazione fisica secondo DIN 38404, a 436 nm (Prove 100) e 254 + 436 nm (Prove 300)	-	10, 20, 50	-	9, 15
Riduzione del ferro	-	0,2 + 10	20	±0,022	5

Settori d'applicazione: 3 Bevande

Biotecnologia, fermentatori

Acque di riscaldamento / Acque di raffreddamento 1 Agricoltura

Materiali edili 2 Acquacoltura

Controllo delle procedure di disinfezione

Acque di drenaggio

Acque potabili

Finitura delle superfici mediante galvanoplastica 10

11 Ambiente

Analisi degli alimenti

12 Acque freatiche, acque di superficie 13 14 Prodotti lattiero-caseari

Acque minerali Acque di mare

17 Piscine

75

Kit analitici Spectroquant®

Parametri S-T

		Parametro	Intervallo di misura d Prove 100/300/600		roquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
	S	Silicati (acido silicico), kit	0,00025 - 0,50000 0,00012 - 0,23370 0,00025 - 0,02500 0 0,00012 - 0,01168		•	0,004 - 0,500 0,002 - 0,234	SiO ₂ Si SiO ₂ Si	100 900	1.01813.0001 1.01813.0002
Approvat USEP Approvat USEP Approvat USEP		Silicati (acido silicico), kit	0,011 - 10,70 0,005 - 5,00	0,011 - 10,70 • 0,005 - 5,00 •	0,11 - 8,56 0,05 - 4,00	0,11 - 8,56 0,05 - 4,00	SiO ₂ Si	300	1.14794.0001
		Silicati (acido silicico), kit	1,1 - 1.070 0,5 - 500	1,1 - 1.070 • 0,5 - 500 •	11 - 1.070 5 - 500	11 - 1.070 5 - 500	SiO ₂ Si	100	1.00857.0001
		Sodio, kit in cuvetta per le soluzioni nutritive per la concimazione	10 - 300	10 - 300	10 - 300	10 - 300	Na	25	1.00885.0001
Appr US	ovato EPA	Solfati, kit	0,50 - 50,0	0,50 - 50,0 •	1,0 - 25,0	1,0 - 25,0	SO ₄	100	1.01812.0001
Appr US	ovato EPA	Solfati, kit in cuvetta	1,0 - 50,0	1,0 - 50,0	2,0 - 50,0	2,0 - 50,0	SO ₄	25	1.02532.0001
Approvato USEPA	ovato EPA	Solfati, kit in cuvetta ^{B.1)}	5 - 250	5 - 250	5 - 250	5 - 250	SO ₄	25	1.14548.0001
Appr US	Approvato USEPA	Solfati, kit	5 - 300	5 - 300 •	5 - 300	10 - 300	SO ₄	100 1.000	1.02537.0001 1.02537.0002
		Solfati, kit	25 - 300	25 - 300 •	-	-	-	200	1.14791.0001
Approvato USEPA Approvato USEPA Approvato USEPA	ovato EPA	Solfati, kit in cuvetta	50 - 500	50 - 500	50 - 500	50 - 500	SO ₄	25	1.00617.0001
	Solfati, kit in cuvetta ^{B.1)}	100 - 1.000	100 - 1.000	100 - 1.000	100 - 1.000	SO ₄	25	1.14564.0001	
		Solfiti, kit in cuvetta	0,8 - 16,00 1,0 - 20,00 0,05 - 3,00 0,04 - 2,40	0,8 - 16,00 • 1,0 - 20,00 • 0,05 - 3,00 • 0,04 - 2,40 •	1,0 - 20,0	1,0 - 20,0	SO ₂ SO ₃ SO ₃ SO ₂	25	1.14394.0001
		Solfiti, kit	1,0 - 60,0 0,8 - 48,0	1,0 - 60,0 • 0,8 - 48,0 •	1,0 - 60,0	1,0 - 60,0	SO ₃ SO ₂	150	1.01746.0001
Approva		Solfuri, kit	0,020 - 1,50	0,020 - 1,50 •	0,10 - 1,50	0,10 - 1,50	S ²⁻	220	1.14779.0001
		Solidi sospesi	25 - 750	25 - 750	50 - 750	50 - 750	Solidi sosp.	-	-
		Stagno, kit in cuvetta	0,10 - 2,50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn	25	1.14622.0001		
7	T	Tensioattivi (anionici), kit in cuvetta	0,05 - 2,00	0,05 - 2,00 •	0,05 - 2,00	0,10 - 2,00	MBAS	25	1.02552.0001
		Tensioattivi (cationici), kit in cuvetta	0,05 - 1,50	0,05 - 1,50 •	0,05 - 1,50	-	СТАВ	25	1.01764.0001
		Tensioattivi (non ionici), kit in cuvetta	0,10 - 7,50	0,10 - 7,50	0,10 - 7,50	0,10 - 7,50	Triton® X-100	25	1.01787.0001

SENSIBILITA

Nuovo kit in cuvetta per i tensioattivi anionici:
con una sensibilità ancora maggiore!

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Blu silicomolibdeno	Analogo a APHA 4500-SiO ₂ D+E, ASTM D859-10, DIN 38405-21	10 + 0,5	50 100	±0,00449	5, 9, 13, 15
Blu silicomolibdeno	Analogo a APHA 4500-SiO ₂ D+E, ASTM D859-10, DIN 38405-21	5,0 + 0,5	10, 20, 50	±0,024	5, 6, 9, 13, 16
Molibdosilicato	Analogo a APHA 4500-SiO ₂ C	0,5 + 2,0 + 4,0 + 5,0	10	±2,1	5, 6, 9, 13, 15
Tiocianato di ferro (III)	Determinazione come cloruro	0,5	-	±13	1
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{\rm 2-}$ E, ASTM D516-11	0,5 + 10	10, 20, 50	±0,90	1, 2, 6, 9, 11, 13, 15, 18
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{\rm 2-}$ E, ASTM D516-11	10	-	±1,1	1, 6, 9, 11, 13, 15, 18
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{\rm 2^{\rm 2}}$ E, ASTM D516-11	5,0	-	±8	1, 6, 9, 11, 13, 15, 16
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{\rm 2-}$ E, ASTM D516-11	0,5 + 5	10	±7	1, 6, 9, 11, 13, 15, 16, 18
Acido tannico	-	2,5	10	±14	6, 9, 11, 13, 15
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{^{2-}}$ E, ASTM D516-11	2,0 + 5,0	-	±16	1, 6, 9, 11, 13, 15, 16
Solfato di bario, turbidimetrico	Analogo a EPA 375.4, APHA 4500-SO $_4^{\rm 2-}$ E, ASTM D516-11	1,0 + 5,0	-	±33	1, 4, 6, 8, 9, 11, 13, 15, 16, 18
Reattivo di Ellman	Per determinazioni nella parte inferiore dell'intervallo di misura vedere i manuali NOVA / Prove	3,0 + 7,0	- - 50 50	±0,4	1, 3, 5, 12, 15, 18
Reattivo di Ellman	-	2,0 + 3,0 + 5,0	10	±1,0	3, 5, 12, 13, 15, 18
Dimetil-p-fenilendiammina	Analogo a EPA 376.2, APHA 4500-S ²⁻ D, ISO 10530, DIN 38405-26	5,0	10, 20, 50	±0,017	2, 8, 9, 11, 13, 15, 18
-	Determinazione fisica	-	20	-	
Violetto di pirocatechina	-	5,0	-	±0,08	5, 10, 16, 18
Blu di metilene	Analogo a EPA 425.1, APHA 5540 C, ASTM 2330-02, DIN EN 903, ISO 7875-1	5,0	-	±0,09	9, 11, 13, 18
Blu di disulfina	Analogo a DIN 38409-20	0,5 + 5,0	-	±0,06	9, 11, 13, 18
ТВРЕ	-	4,0	-	±0,26	9, 11, 13, 18

Settori d'applicazione:	3	Bevande	7	Controllo delle procedure di disinfezione	11	Ambiente	15	Acque minerali
	4	Biotecnologia, fermentatori	8	Acque di drenaggio	12	Analisi degli alimenti	16	Acque di mare
1 Agricoltura	5	Acque di riscaldamento / Acque di raffreddamento	9	Acque potabili	13	Acque freatiche, acque di superficie	17	Piscine
2 Acquacoltura	6	Materiali edili	10	Finitura delle superfici mediante galvanoplastica	14	Prodotti lattiero-caseari	18	Acque reflue

Kit analitici Spectroquant®

Parametri T-Z

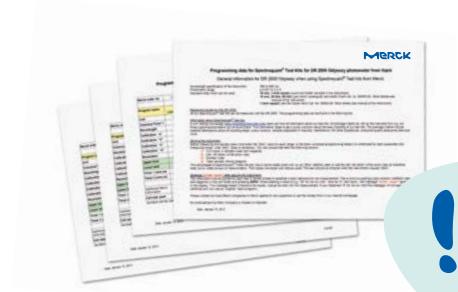
	Parametro	Intervallo di misura Prove 100/300/600	degli strumenti Spe NOVA 30/60	ctroquant® [mg/L] Multy	Move 100	Forma	N° di test	N° Catalogo
T	TOC, kit in cuvetta	5,0 - 80,0	5,0 - 80,0	5,0 - 80,0	-	TOC	25	1.14878.0001
	TOC, kit in cuvetta	50 - 800	50 - 800	50 - 800	-	TOC	25	1.14879.0001
	TOC, tappi a vite per digestione con kit Spectroquant®	-	-	-	-	-	6	1.73500.0001
	TOC, standard 1.000 ±10 mg/L	-	_	-	-	-	100 mL	1.09017.0100
	Torbidità	1 - 100	1 - 100 •	1 - 100	1 - 100	FAU	-	-
	Trasmittanza	0,0 - 100,0 %	0,0 - 100,0 %	-	-	Т	-	-
	Tubo di assorbimento per arseni- co con cono smerigliato NS29	-	-	-	-	-	1	1.73501.0001
Z	Zinco, kit in cuvetta ^{C)}	0,025 - 1,000	0,025 - 1,000	25 – 1.000 μg/L	25 – 1.000 μg/L	Zn	25	1.00861.0001
	Zinco, kit ^{c)}	0,05 - 2,50	0,05 - 2,50 •	-	-	Zn	100	1.14832.0001
	Zinco, reagente 6 (isobutilmetil-chetone GR)	-	-	-	-	-	200	1.06146.1000
	Zinco, kit in cuvetta ^{c)}	0,20 - 5,00	0,20 - 5,00	0,20 - 5,00	0,20 - 5,00	Zn	25	1.14566.0001

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare [mL]	Dimensioni delle cuvette [mm] NOVA/Prove	Accu- ratezza [mg/L]	Settori d'applicazione
Indicatore	Ossidazione analoga a APHA 5310 D	3,0 + 25	-	±3,6	9, 11, 13, 15, 18
Indicatore	Ossidazione analoga a APHA 5310 D	1,0 + 3,0 + 9,0	_	±40	8, 11, 13, 18
-	Per usi ripetuti; materiale aggiuntivo necessario per la determinazione del TOC	-	-	-	
-	Analogo a EN 1484-H43, DIN 38409-H3	-	-	-	
-	Analogo a EN ISO 7027	-	50	-	
-	-	10, 20, 50	-	-	
-	Per usi ripetuti, materiale aggiuntivo necessario per la determinazione dell'arsenico	-	-	-	
PAR	-	0,5 + 2,0 + 10	-	±0,033	1, 5, 9, 10, 11, 13, 15, 18
CI-PAN	-	5,0	10	±0,07	5, 6, 8, 9, 10, 11, 15, 18
-	Agente di estrazione per kit dello zinco 1.14832.0001	-	-	-	
PAR	-	0,5	-	±0,18	5, 6, 8, 9, 10, 11, 15, 18

Settori d'applicazione: 3 Bevande

4 Biotecnologia, fermentatori
1 Agricoltura 5 Acque di riscaldamento / Acque di raffreddamento
2 Acquacoltura 6 Materiali edili

7 Controllo delle procedure di disinfezione
 8 Acque di drenaggio
 9 Acque potabili
 10 Finitura delle superfici mediante galvanoplastica


11 Ambiente 15 Acque minerali 12 Analisi degli alimenti 16 Acque di mare 13 Acque freatiche, acque di 17 Piscine superficie 14 Prodotti lattiero-caseari 18 Acque reflue

Kit analitici Spectroquant® per fotometri di altre case

Offriamo anche **kit analitici Spectroquant**® utilizzabili senza problemi con fotometri di altre case. Essi non richiedono una calibrazione specifica per lo strumento, perché utilizzano i programmi originali installati dai produttori e funzionano conformemente a quanto descritto nel manuale di istruzioni dello strumento stesso. Ciò significa che potrà approfittare della nostra documentazione relativa alla qualità anche utilizzando fotometri di altre case. Dovrà semplicemente scaricare il certificato del lotto dal nostro sito: **www.merckmillipore.com/coa**.

Kit analitici per fotometri di altre case | Panoramica A-Z

	Parametro	Intervallo di misura [mg/l]	N° di test	N° Cat. Merck	N° Cat. Hach
C	Cloro, buste di polvere per determinazione con fotometri di altre case in campioni da 10 mL (cloro libero)	0 - 2,00 Cl ₂	100	1.19254.0001	21055-69 21055-28
	Cloro, buste di polvere per determinazione con fotometri di altre case in campioni da 25 mL (cloro libero)	0 - 10,00 Cl ₂	100	1.19256.0001	14070-99 14070-28
	Cloro, buste di polvere per determinazione con fotometri di altre case in campioni da 10 mL (cloro libero)	0 - 2,00 Cl ₂	100	1.19257.0001	21056-69 21056-28
	Cloro, buste di polvere per determinazione con fotometri di altre case in campioni da 25 mL (cloro libero)	0 - 10,00 Cl ₂	100	1.19258.0001	14064-99 14064-28
	COD, kit in cuvetta per fotometri di altri produttori	0 - 40,0 COD	25	1.18750.0001	24158-25 24158-15 24158-51
	COD, kit in cuvetta per fotometri di altri produttori	0 - 150,0 COD	25	1.18751.0001	21258-25 21258-15 21258-51
	COD, kit in cuvetta per fotometri di altri produttori	0 - 1.500 COD	25	1.18752.0001	21259-25 21259-15 21259-51
	COD, kit in cuvetta per fotometri di altri produttori	0 - 15.000 COD	25	1.18753.0001	24159-25 24159-15 24159-51
S	Sequestranti dell'ossigeno, kit	0,020 – 0,500 DEHA 0,027 - 0,667 carboidr. 0,053 – 1,315 idroch. 0,078 – 1,950 ISA 0,087 – 2,170 MEKO	200	1.19251.0001	24466-00
	Solfati, buste di polvere per determinazione con fotometri di altre case in campioni da 25 $\ensuremath{\text{mL}}$	0 - 70,0 SO ₄	100	1.73015.0001	12065-99 12065-28

A proposito...

Tutti i kit analitici Spectroquant® possono essere programmati per l'impiego con i fotometri di qualunque produttore. È sufficiente scaricare i dati di programmazione all'indirizzo: www.service-test-kits.com

Metodo	Riferimenti a norme e standard / Commenti	Volume da pipettare	Dim. cuvette Hach	Settori d'applicazione
DPD	Analogo a EPA 330.5, APHA 4500-Cl G	10 mL	1 pollice	2, 7, 9, 11, 13, 16, 17, 18
DPD	Analogo a EPA 330.5, APHA 4500-Cl G	25 mL	1 pollice	2, 7, 9, 11, 13, 16, 17, 18
DPD	Analogo a EPA 330.5, APHA 4500-Cl G	10 mL	1 pollice	2, 7, 9, 11, 13, 16, 17, 18
DPD	Analogo a EPA 330.5, APHA 4500-Cl G	25 mL	1 pollice	2, 7, 9, 11, 13, 16, 17, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 5220 D, ISO 15705 e ASTM D1252-06B	2,0 mL	16 mm	5, 9, 10, 11, 13, 15, 17, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 5220 D, ISO 15705 e ASTM D1252-06B	2,0 mL	16 mm	5, 9, 10, 11, 13, 15, 17, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 5220 D, ISO 15705 e ASTM D1252-06B	2,0 mL	16 mm	3, 4, 5, 8, 10, 11, 13, 18
Ossidazione con acido cromosolforico, determinazione come cromati	Analogo a EPA 410.4, APHA 5220 D, ISO 15705 e ASTM D1252-06B	0,2 mL	16 mm	3, 4, 5, 8, 10, 11, 13, 18
Riduzione del ferro		2,0 mL + 10 mL	1 pollice	5
Cloruro di bario	Analogo a EPA 375.4	25 mL	1 pollice	1, 5, 6, 7, 8, 9, 10, 11, 13, 15, 18

Settori d'applicazione: 3 Bevande
4 Biotecnol
1 Agricoltura 5 Acque di

- 4 Biotecnologia, fermentatori
- 5 Acque di riscaldamento / Acque di raffreddamento
- 2 Acquacoltura 6 Materiali edili

- 7 Controllo delle procedure di disinfezione
- 8 Acque di drenaggio
- 9 Acque potabili
- 10 Finitura delle superfici mediante galvanoplastica
- 1 Ambiente
- 12 Analisi degli alimenti13 Acque freatiche, acqu
- Acque freatiche, acque di superficieProdotti lattiero-caseari
- L5 Acque minerali
- 16 Acque di mare17 Piscine
- seari 18 Acque reflue

Kit analitici Spectroquant® per campioni con un elevato tenore salino

Un elevato tenore salino può interferire con i reagenti dei kit analitici sviluppati per le acque potabili e le acque reflue. Le tabelle che seguono aiutano a scegliere i kit Spectroquant® più adatti per analizzare le acque marine e i campioni con un elevato tenore salino. Selezioni il kit per il parametro di Suo interesse per scoprirne i limiti di tolleranza nei confronti dei sali neutri e l'idoneità per l'analisi delle acque di mare.

più di 250 applicazioni

in www.merckmillipore.com/aaf
> Fotometria

MOLTE SOLUZIONI

per tutti i settori d'applicazione

METODI SEMPLICI, RAPIDI E AFFIDABILI

per la Sua comodità

senza limiti

Kit per la determinazione del COD nelle acque di mare/ad elevato tenore di cloro

- Primo kit per la determinazione del COD con tolleranza ai cloruri illimitata
- Nessun bisogno di titolare o diluire i campioni
- Adatto per l'analisi delle acque marine e delle acque reflue municipali o industriali
- Intervallo inferiore: 5 60 mg/L COD [N° Cat. 1.17058.0001]
- Intervallo superiore: 50 3.000 mg/L COD [N° Cat. 1.17059.0001]
- Semplice, rapido e preciso

Maggiori dettagli alle pagine 64, 65 e 84

Idoneità dei kit analitici per l'analisi delle acque di mare e limiti di tolleranza per i sali neutri | Panoramica A-C

	Kit analitico	N° Catalogo	Acqua di mare	Limite di tollerar NaCl	nza, sali in % NaNO ₃	Na ₂ SO ₄
A	Acidi organici volatili, kit in cuvetta	1.01749.0001	No	20	20	10
	Acidi organici volatili, kit	1.01809.0001	No	20	20	10
	Acido cianurico, kit	1.19253.0001	Sì	-	-	-
	Alluminio, kit in cuvetta	1.00594.0001	Sì	20	20	20
	Alluminio, kit	1.14825.0001	Sì	10	20	20
	Ammonio, kit in cuvetta	1.14739.0001	No	5	5	5
	Ammonio, kit in cuvetta	1.14558.0001	Sì	20	10	15
	Ammonio, kit in cuvetta	1.14544.0001	Sì	20	15	20
	Ammonio, kit in cuvetta	1.14559.0001	Sì	20	20	20
	Ammonio, kit	1.14752.0001	No 1)	10	10	20
		1.14752.0002				
	Ammonio, kit	1.00683.0001	Sì	20	20	20
	AOX, kit in cuvetta	1.00675.0001	No	0,4	20	20
	Argento, kit	1.14831.0001	No	0	1	5
	Arsenico, kit	1.01747.0001	No	10	10	10
	Azoto (totale), kit in cuvetta	1.14537.0001	No	0,5	_	10
	Azoto (totale), kit in cuvetta	1.00613.0001	No	0,2	-	10
	Azoto (totale), kit in cuvetta	1.14763.0001	No	2	-	20
B	Biossido di cloro, kit	1.00608.0001	No	10	10	10
	BOD, kit in cuvetta	1.00687.0001	Sì	20	20	20
	Boro, kit in cuvetta	1.00826.0001	Sì	10	20	20
	Boro, kit	1.14839.0001	No	20	5	20
	Bromo, kit	1.00605.0001	No	10	10	10
C	Cadmio, kit in cuvetta	1.14834.0001	No	1	10	1
	Cadmio, kit	1.01745.0001	No	1	10	1
	Calcio, kit in cuvetta	1.00858.0001	No	2	2	1
	Calcio, kit	1.14815.0001	Sì	20	20	10
	Calcio, kit	1.00049.0001	No	_	_	-
	Capacità acida, kit in cuvetta	1.01758.0001	No	-	-	-
	Cianuri, kit in cuvetta	1.02531.0001	No	10	10	10
	Cianuri, kit in cuvetta	1.14561.0001	No	10	10	10
	Cianuri, kit	1.09701.0001	No	10	10	10
	Cloro, kit	1.00598.0001	No	10	10	10
		1.00598.0002				
	Cloro, kit	1.00602.0001	No	10	10	10
		1.00602.0002				
	Cloro, kit	1.00599.0001	No	10	10	10
	Cloro, reagente (liquido) per cloro	1.00086.0001				
	libero e totale	1.00087.0001				
		1.00088.0001	No	10	10	10
	Cloruri, kit	1.01807.0001	No	-	0,5	0,05

¹⁾ Questo kit è adatto anche per le analisi delle acque di mare dopo l'aggiunta della soluzione di idrossido di sodio (si veda il foglietto illustrativo).

Kit analitici Spectroquant® per campioni con un elevato tenore salino

Idoneità dei kit analitici per l'analisi delle acque di mare e limiti di tolleranza per i sali neutri | Panoramica C-F

	Kit analitico	N° Catalogo	Acqua di mare	Limite di tolleranza, sali in %		
	Ric ununcies	n catalogo	Acqua ai marc	NaCl	NaNO ₃	Na ₂ SO ₄
C	Cloruri, kit in cuvetta	1.01804.0001	No		0,5	0,05
	Cloruri, kit in cuvetta	1.14730.0001	Sì	-	20	1
	Cloruri, kit	1.14897.0001	Sì	-	10	0,1
		1.14897.0002				
	Cloruri, kit in cuvetta	1.00595.0001	No	10	10	10
	Cloruri, kit in cuvetta	1.00597.0001	No	10	10	10
	COD, kit in cuvetta	1.14560.0001	No	0,4	10	10
	COD, kit in cuvetta	1.01796.0001	No	0,4	10	10
	COD, kit in cuvetta	1.14540.0001	No	0,4	10	10
	COD, kit in cuvetta	1.14895.0001	No	0,4	10	10
	COD, kit in cuvetta	1.14690.0001	No	0,4	20	20
	COD, kit in cuvetta	1.14541.0001	No	0,4	10	10
	COD, kit in cuvetta	1.14691.0001	No	0,4	20	20
	COD, kit in cuvetta	1.14555.0001	No	1,0	10	10
	COD, kit in cuvetta	1.01797.0001	No	10	20	20
	COD, kit in cuvetta per acque di	1.17058.0001	Sì	35	10	10
	mare/ad alto contenuto di cloruri					
	COD, kit in cuvetta per acque di	1.17059.0001	Sì	35	10	10
	mare/ad alto contenuto di cloruri					
	COD, kit in cuvetta (senza Hg)	1.09772.0001	No	0	10	10
	COD, kit in cuvetta (senza Hg)	1.09773.0001	No	0	10	10
	Cromati, kit in cuvetta (cromo VI)	1.14552.0001	Sì	10	10	10
	Cromo (totale), kit in cuvetta	1.14552.0001	No	1	10	10
	Cromati, kit	1.14758.0001	Sì	10	10	10
D	Durezza residua, kit in cuvetta	1.14683.0001	No	0,01	0,01	0,01
	Durezza totale, kit in cuvetta	1.00961.0001	No	2	2	1
F	Fenolo, kit	1.00856.0001	Sì	20	20	20
	Fenolo, kit in cuvetta	1.14551.0001	Sì	20	20	15
	Ferro, kit in cuvetta	1.14549.0001	Sì	20	20	20
	Ferro, kit in cuvetta	1.14896.0001	No	5	5	5
	Ferro, kit	1.14761.0001	Sì	20	20	20
		1.14761.0002				
	Ferro, kit	1.00796.0001	Sì	20	20	20
	Fluoruri, kit	1.00822.0250	Sì ²⁾	0,05	0,05	0,001
	Fluoruri, kit in cuvetta	1.00809.0001	No	10	10	10
	Fluoruri, kit	1.14598.0001	Sì	20	20	20
		1.14598.0002				
	Formaldeide, kit in cuvetta	1.14500.0001	No	5	0	10
	Formaldeide, kit	1.14678.0001	No	5	0	10
	Fosfati (orto-fosfati), kit in cuvetta	1.00475.0001	Sì	20	20	20
	Fosfati (orto-fosfati), kit in cuvetta	1.14543.0001	Sì	5	10	10

²⁾ Previa distillazione, secondo APHA 4400-F-B

Idoneità dei kit analitici per l'analisi delle acque di mare e limiti di tolleranza per i sali neutri | Panoramica F-O

	Kit analitico	N° Catalogo	Acqua di mare	Limite di tollerar NaCl	nza, sali in % NaNO ₃	Na ₂ SO ₄
F	Fosfati (orto-fosfati), kit in cuvetta	1.00474.0001	Sì	5	10	10
	Fosfati (orto-fosfati), kit in cuvetta	1.14729.0001	Sì	20	20	20
	Fosfati (orto-fosfati), kit in cuvetta	1.00616.0001	Sì	20	20	20
	Fosfati (orto-fosfati), kit in cuvetta	1.00673.0001	Sì	20	20	20
	Fosfati, kit	1.14848.0001 1.14848.0002	Sì	5	10	10
	Fosfati, kit	1.00798.0001	Sì	15	20	10
	Fosfati, kit in cuvetta	1.14546.0001	Sì	20	20	20
	Fosfati, kit	1.14842.0001	Sì	20	20	20
	Fosforo (totale), kit in cuvetta	1.14543.0001	No	1	10	10
	Fosforo (totale), kit in cuvetta	1.14729.0001	Sì	5	20	20
	Fosforo (totale), kit in cuvetta	1.00673.0001	Sì	20	20	20
1	Idrazina, kit	1.09711.0001	No	20	5	2
	Iodio, kit	1.00606.0001	No	10	10	10
M	Magnesio, kit in cuvetta	1.00815.0001	Sì	2	2	1
	Manganese, kit	1.00816.0001	No	20	20	20
	Manganese, kit	1.01846.0001	No	20	25	5
	Manganese, kit	1.14770.0001	Sì	20	20	20
		1.14770.0002				
	Molibdeno, kit in cuvetta	1.00860.0001	No	20	20	5
	Monoclorammina, kit	1.01632.0001	No	10	10	20
N	Nichel, kit in cuvetta	1.14554.0001	No	20	20	20
	Nichel, kit	1.14785.0001	No	20	20	20
	Nitrati, kit in cuvetta	1.14542.0001	No	0,4	-	20
	Nitrati, kit in cuvetta	1.14563.0001	No	0,2	-	20
	Nitrati, kit in cuvetta	1.14764.0001	No	0,5	-	20
	Nitrati, kit in cuvetta	1.00614.0001	No	2	-	20
	Nitrati, kit	1.01842.0001	No	0,001	-	0,001
	Nitrati, kit	1.14773.0001	No	0,4	-	20
	Nitrati, kit	1.09713.0001 1.09713.0002	No	0,2	-	20
	Nitrati, kit in cuvetta (acque di mare)	1.14556.0001	Sì	20	_	20
	Nitrati, kit (acque di mare)	1.14942.0001	Sì	20	_	20
	Nitriti, kit in cuvetta	1.14547.0001	Sì	20	20	15
	Nitriti, kit in cuvetta	1.00609.0001	Sì	20	20	15
	Nitriti, kit	1.14776.0001	Sì	20	20	15
	,	1.14776.0001		=•		
D	Oro, kit	1.14821.0002	Sì	10	20	5
•	Ossigeno, kit in cuvetta	1.14694.0001	No	10	5	1
	Ozono, kit	1.00607.0001	No	10	10	10
		1.00607.0002				

Kit analitici Spectroquant® per campioni con un elevato tenore salino

Idoneità dei kit analitici per l'analisi delle acque di mare e limiti di tolleranza per i sali neutri | Panoramica P-Z

	Kit analitico	N° Catalogo	Acqua di mare	Limite di tollerar NaCl	nza, sali in % NaNO₃	Na,SO ₄
P	Perossido di idrogeno, kit in cuvetta	1.14731.0001	Sì	20	20	20
•	Perossido di idrogeno, kit	1.18789.0001	No	0,1	1	5
	pH, kit in cuvetta	1.01744.0001	Sì	-	-	-
	Piombo, kit in cuvetta	1.14833.0001	No	20	20	1
	Piombo, kit	1.09717.0001	No	20	5	15
	Potassio, kit in cuvetta	1.14562.0001	Sì	20	20	20
	Potassio, kit in cuvetta	1.00615.0001	Sì	20	20	20
R	Rame, kit in cuvetta	1.14553.0001	Sì	15	15	15
	Rame, kit	1.14767.0001	Sì	15	15	15
S	Sequestranti dell'ossigeno, kit	1.19251.0001	No	_	_	-
	Silicati (acido silicico), kit	1.01813.0001	No	0,5	1	0,2
	Silicati (acido silicico), kit	1.14794.0001	Sì	5	10	5
	Silicati (acido silicico), kit	1.00857.0001	No	5	10	2,5
	Sodio, kit in cuvetta	1.00885.0001	No	-	10	1
	Solfati, kit	1.01812.0001	No	2	0,007	-
	Solfati, kit in cuvetta	1.14548.0001	Sì	10	0,1	-
	Solfati, kit in cuvetta	1.00617.0001	Sì	10	0,1	-
	Solfati, kit in cuvetta	1.14564.0001	Sì	10	0,5	-
	Solfati, kit in cuvetta	1.02537.0001	Sì	10	0,015	-
		1.02537.0002				
	Solfati, kit	1.02532.0001	No	2	0,007	-
	Solfati, kit	1.14791.0001	No	0,2	0,2	-
	Solfiti, kit in cuvetta	1.14394.0001	No	20	20	20
	Solfiti, kit	1.01746.0001	No	20	20	20
	Solfuri, kit	1.14779.0001	No	0,5	1	1
	Stagno, kit in cuvetta	1.14622.0001	Sì	20	20	20
T	Tensioattivi (anionici), kit in cuvetta	1.02552.0001	No	0,1	0,01	10
	Tensioattivi (cationici), kit in cuvetta	1.01764.0001	No	0,1	0,1	20
	Tensioattivi (non ionici), kit in cuvetta	1.01787.0001	No	2	5	2
	TOC, kit in cuvetta	1.14878.0001	No	0,5	10	10
	TOC, kit in cuvetta	1.14879.0001	No	5	20	20
Z	Zinco, kit in cuvetta	1.00861.0001	No	20	20	1
	Zinco, kit in cuvetta	1.14566.0001	No	10	10	10
	Zinco, kit	1.14832.0001	No	5	15	15

Flessibilità

Un ampio intervallo di misura a vantaggio della flessibilità nella determinazione dei solfati

- I solfati sono essenziali per la salute umana
- Tuttavia, elevati livelli di solfati nell'acqua di rete possono causare la corrosione o l'esplosione delle condutture e ridurre la qualità dell'acqua
- Limite superiore stabilito dagli enti normativi: circa 250 mg/L
- Il kit per i solfati Spectroquant[®], con un intervallo di misura di 5-300 mg/L, è ideale per analizzare l'acqua in bottiglia con ridotti livelli di solfati, o l'acqua di rete con concentrazioni elevate
- Kit economicamente vantaggioso con 100 o 1.000 determinazioni per confezione
- In alternativa, il kit in cuvetta Spectroquant® offre maggiore comodità con 25 cuvette preriempite
- Kit per solfati Spectroquant® [N° Cat. 1.02537.0001]
- Kit in cuvetta per solfati Spectroquant® [N° Cat. 1.02532.0001]

Per Sua comodità, il nostro "Motore di ricerca per bollettini applicativi analitici" consente di scaricare altre applicazioni:

www.merckmillipore.com/aaf

Determinazioni dei fosfati sensibili e sicure 1 fosfati sono essenziali per animali e vegetali Tuttavia, il tenore dei fosfati nelle acque freatiche e in quelle di superficie deve essere il più possibile ridotto per evitare il fenomeno dell'eutrofizzazione (eccessiva proliferazione di alghe) e rischi ambientali Con il fotometro Spectroquant® Prove 600 e le cuvette da 100 mm, è possibile quantificare fino

EPA 365.2+3

a concentrazioni minime di 2,5 μg/L di PO₂-P,

conformemente ai metodi DIN EN ISO 6878, 4500 P e

• Kit per fosfati Spectroquant® [N° Cat. 1.14848.0001]

Assicurazione della Qualità Analitica con il sistema Spectroquant®

SEMPLICEMENTE COMPLETA

L'Assicurazione della Qualità Analitica [AQA] è la prassi che consente di assicurare che i risultati ottenuti siano affidabili e conformi alle linee guida delle Buone Pratiche di Laboratorio (GLP). Questo processo esauriente comprende la qualifica dell'installazione (IQ), la qualificaz operativa (OQ) e la qualifica delle prestazioni (PQ).

Il concetto di AQA del sistema Spectroquant® copre tutte le fasi del controllo della qualità interno (IQC). Inoltre forniamo una documentazione completa per la IQ, la OQ e la PQ di tutti gli strumenti Spectroquant®. I valori attesi e le tolleranze sono riportati nei certificati o preprogrammati negli strumenti.

La **Qualifica dell'Installazione [IQ]** mira a verificare che il materiale consegnato corrisponda all'ordine d'acquisto e a garantire una corretta installazione dello strumento.

POP 3 fasi per una grande qualità

CONTROLLO DEL FOTOMETRO: Qualifica Operativa (OQ)
Facile da eseguire con gli standard dei colori certificati e/o gli standard UV/VIS
Certipur®

CONTROLLO DEL SISTEMA: Qualifica delle Prestazioni (PQ)
Determinazione del recupero con le soluzioni standard CombiCheck, le soluzioni standard di riferimento certificate (CRM), o le soluzioni standard Certipur®

Controllo della matrice: Qualifica delle Prestazioni (PQ)
Un solo arricchimento con le soluzioni CombiCheck R-2, o diluizioni/arricchimenti multipli con soluzioni standard di riferimento certificate (CRM) o soluzioni preparate autonomamente.

CONTROLLO DEL FOTOMETRO

Qualifica Operativa (OQ) - Controllo dello strumento

La OQ si prefigge di assicurare la funzionalità dello strumento per l'intera durata del processo, secondo le procedure definite.

Controllo del fotometro

Tutti gli strumenti Spectroquant[®] vengono sottoposti a controllo per mezzo di standard dei colori certificati o con gli standard UV/VIS Certipur[®].

Fotometri Spectroquant® NOVA e Spectroquant® Prove

Questi fotometri offrono un concetto di AQA con l'ausilio dello strumento stesso che combina i tre componenti essenziali del controllo della qualità. Per un'AQA accurata e senza fatica, – i valori attesi e le tolleranze sono specificate nel certificato e possono essere conservati e utilizzati per controlli futuri.

100,300,600 30,600,600 100,000,000,000,000

Controllo del fotometro	Informazioni	Contenuto	N° Catalogo	Prove	NOVA	Mo	ve	Multy
Cuvetta Spectroquant® Zero	Raccomandiamo di sostituire le cuvette Zero ogni 2 anni.	Una cuvetta da 16 mm piena di acqua distillata	1.73503.0001	•	•			
Spectroquant® PhotoCheck	Gli standard secondari sono conformi alle linee guida ISO 9001, ISO 14001 e ISO 17205 e calibrati con strumenti qualificati utilizzando standard del NIST.	 Soluzioni di controllo per 3 diverse lunghezze d'onda 2 cuvette Zero 2 cuvette per il controllo del lettore di codici a barre (solo per fotometri Spectroquant® NOVA) 	1.14693.0001	•	•			
Standard di verifica Spectroquant®	Gli standard sono forniti in flaconcini sigillati e calibrati singolarmente su strumenti trac- ciabili al SRM 2032, 935a del NIST.	 1 standard zero 6 cuvette per il controllo di 6 diverse lunghezze d'onda dello strumento 	1.19302.0001					•
Standard di riferimento Spectroquant®	Gli standard sono forniti in flaconcini sigillati e calibrati singolarmente su strumenti trac- ciabili al SRM 2032, 935a del NIST.	 1 standard zero 3 cuvette per il controllo nello strumento di 3 diverse concentrazioni dei metodi per il cloro, il biossido di cloro e l'ozono 	1.19301.0001					
Spectroquant® PipeCheck	Per il controllo delle pipette e dei risultati della documentazione, senza bisogno di una bilancia di precisione.	 24 cuvette con soluzioni di controllo 4 cuvette con le soluzioni di riferimento corrispondenti 	1.14962.0001	•	•			•

Assicurazione della Qualità Analitica con il sistema Spectroquant®

Standard UV/VIS Certipur®

Con gli standard UV/Vis Certipur® si può verificare se il proprio spettrofotometro UV/Vis opera in modo costante e corretto. Sono disponibili soluzioni per il controllo dei seguenti parametri, secondo la Farm. Eu:

- assorbanza
- luce diffusa
- accuratezza delle lunghezze d'onda

Un'attività conforme a GLP, GMP, USP e ISO 9001 o ISO 45001 richiede l'esecuzione di questi controlli con regolarità. Tutti gli standard sono tracciabili al NIST.

Denominazione	Contenuto	N° Catalogo	Prove 100	Prove 300	Prove 600
Standard UV/VIS 1	Soluzione Certipur® di dicromato di potassio per misure di assorbanza sec. DAB e Farm. Eu. 2 x 10 mL $\rm K_2Cr_2O_7-60,06$ mg/L in $\rm H_2SO_4-0,01$ N e 6 x 10 mL $\rm H_2SO_4-0,01$ N	1.08160.0001	•	•	•
Standard UV/VIS 1A	Soluzione Certipur® di dicromato di potassio per misure di assorbanza a 430 nm sec. DAB e Farm. Eu. 2 x 10 mL $\rm K_2Cr_2O_7$ – 600,06 mg/L in $\rm H_2SO_4$ – 0,01 N e 6 x 10 mL $\rm H_2SO_4$ – 0,01 N	1.04660.0001	•	•	•
Standard UV/VIS 2	Soluzione Certipur® di nitrito di sodio per il controllo della luce diffusa secondo DAB e Farm. Eu. 3 x 10 mL NaNO $_2$ – 50 g/L in $\rm H_2O$	1.08161.0001	•	•	•
Standard UV/VIS 3	Soluzione Certipur® di ioduro di sodio per il controllo della luce diffusa secondo DAB e Farm. Eu. 3 x 10 mL Nal – 10 g/L in $\rm H_2O$	1.08163.0001			
Standard UV/VIS 4	Soluzione Certipur® di cloruro di potassio per il controllo della luce diffusa secondo DAB e Farm. Eu. 3 x 10 mL KCl – 12 g/L in $\rm H_2O$	1.08164.0001			•
Standard UV/VIS 5	Soluzione Certipur $^{\otimes}$ di toluene in n-esano per il controllo del potere di risoluzione secondo DAB e Farm. Eu. 2 x 10 mL toluene 0,02 % (v/v) e 6 x 10 mL n-esano	1.08165.0001			
Standard UV/VIS 6	Soluzione Certipur® di ossido di olmio, materiale di riferimento per il controllo delle lunghezze d'onda sec. DAB e Farm. Eu. 3 x 10 mL $\rm Ho_2O_3-40~g/L$ in $\rm HClO_4$ (10 % v/v)	1.08166.0001	•	•	•

CONTROLLO DEL SISTEMA

Qualifica delle prestazioni [PQ] - Controllo dell'intero sistema e della matrice del campione

La verifica delle funzionalità correlate al prodotto è la fase più completa del processo e comprende la misurazione sia di standard specifici per il metodo, sia di campioni reali. La PQ si articola in due parti: il controllo del sistema e il controllo della matrice.

Controllo del sistema

Il Controllo del Sistema si occupa di tutti i componenti dell'analisi (strumento, kit analitico, standard, pipetta e/o cuvetta e operatore).

Le soluzioni standard suggerite per ogni kit analitico Spectroquant® sono elencate alle pagine 92 - 97.								
▶ Spectroquant® CombiCheck Informazioni alle pagine 98 – 101								
► Soluzioni standard (CRM) per applicazioni fotometriche Informazioni alla pagina 102								
▶ Soluzioni standard Certipur® Informazioni alla pagina 106								

CONTROLLO DELLA MATRICE POP 3

Cosa: il controllo della matrice identifica gli errori di misurazione dovuti a interferenze da parte di sostanze estranee all'interno del campione. Poiché esse possono interferire anche in modo significativo con i risultati, sono state esaminate diverse sostanze estranee per definire la concentrazione massima alla quale possono essere presenti nei campioni senza generare errori. Il foglio illustrativo di ogni kit analitico Spectroquant® riporta tali limiti.

Perché: nel caso di campioni con una composizione molto complessa o sconosciuta, è possibile analizzare le interferenze in base alle percentuali di recupero e rettificarle per mezzo di contromisure adeguate, come il pretrattamento dei campioni.

Come: in base alla concentrazione del campione, si può scegliere tra due metodi:

1. un'unica aggiunta (arricchimento) dello standard con la soluzione CombiCheck R-2

▶ Spectroquant[®] CombiCheck

Informazioni alle pagine 98 - 101

2. diluizioni o arricchimenti multipli con soluzioni di arricchimento preparate autonomamente

Per evitare di modificare la matrice del campione, le soluzioni di arricchimento devono essere standard molto concentrati da utilizzare in quantità ridotte rispetto all'aliquota del campione.

▶ Soluzioni standard (MRC) per applicazioni fotometriche

Informazioni alla pagina 102

▶ Soluzioni standard Certipur®

Informazioni alla pagina 106

Un'assicurazione della qualità esauriente che fa uso dei documenti delle qualifiche IQ, OQ e PQ trasformerà le Sue determinazioni in risultati analitici comprovati e verificabili. Per saperne di più sui nostri servizi di assicurazione della qualità, non esiti a contattare il Suo rappresentante Merck.

PROTEGGA I SUDI DATI

Controllo dell'intero sistema protetto da password

- Si accerti che gli intervalli per i controlli AQA vengano osservati, stabilendo una password (fotometri NOVA) o definendo gruppi di utenti con una struttura gerarchica (spettrofotometri Prove)
- Determinazioni e metodi sono possibili soltanto se gli esami previsti dal controllo qualità e gli intervalli di esecuzione sono rispettati
- La documentazione dei risultati dell'AQA è fornita sotto forma di rapporti finali che provano la conformità alle GLP ed assicurano che il sistema viene sottoposto a prove di controllo

Assicurazione della Qualità Analitica con il sistema Spectroquant®

Le seguenti tabelle mostrano i kit analitici più idonei per i diversi parametri dell'assicurazione della qualità. Nei casi in cui un parametro non è stabile (es. cloro), forniamo le istruzioni operative per la preparazione dello standard. Esse sono disponibili nella prefazione dei manuali per l'impiego dei nostri fotometri e colorimetri, o all'indirizzo www.merckmillipore.com/photometry. Un'esauriente panoramica delle soluzioni standard è disponibile nel nostro e-shop www.sigma-aldrich.com e a pagina 104.

Parametri A

	Kit analitico	N° Cat. kit analit.	N° Cat. CombiCheck	N° Cat. soluzione standard (CRM)	Standard alternativo	N° Cat. sol. standard Certipur®
A	Acidi organici volatili, kit in cuvetta	1.01749.0001			2)	
	Acidi organici volatili, kit	1.01809.0001			2)	
	Acido cianurico, kit	1.19253.0001			2)	
	Alluminio, kit in cuvetta	1.00594.0001	1.18701.0001	1.32226.0100	1)	1.19770.0100
	Alluminio, kit	1.14825.0001	1.18701.0001	1.32225.0100	1)	1.19770.0100
	Ammonio, kit in cuvetta	1.14739.0001	1.14695.0001	1.25022.0100 1.25023.0100	1)	1.19812.0500
	Ammonio, kit in cuvetta	1.14558.0001	1.14676.0001	1.25022.0100 1.25023.0100 1.25024.0100 1.25025.0100	1)	1.19812.0500
	Ammonio, kit in cuvetta	1.14544.0001	1.14675.0001	1.25023.0100 1.25024.0100 1.25025.0100 1.25026.0100	1)	1.19812.0500
	Ammonio, kit in cuvetta	1.14559.0001	1.14689.0001	1.25025.0100 1.25026.0100 1.25027.0100	1)	1.19812.0500
	Ammonio, kit	1.14752.0001 1.14752.0002	1.14695.0001	1.25022.0100 1.25023.0100 1.25024.0100	1)	1.19812.0500
	Ammonio, kit	1.00683.0001	1.14689.0001	1.25025.0100 1.25026.0100 1.25027.0100	1)	1.19812.0500
	AOX, kit in cuvetta	1.00675.0001			0,2 - 2,0 mg/L AOX 1.00680.0001	
	Argento, kit	1.14831.0001			1)	1.19797.0100
	Arsenico, kit	1.01747.0001		1.33002.0250	1)	1.19773.0100
	Azoto (totale), kit in cuvetta	1.14537.0001	1.14695.0001	1.25043.0100 1.25044.0100	2)	
	Azoto (totale), kit in cuvetta	1.00613.0001	1.14695.0001	1.25043.0100 1.25044.0100	2)	
	Azoto (totale), kit in cuvetta	1.14763.0001	1.14689.0001	1.25044.0100 1.25045.0100	2)	

¹⁾ Soluzione standard, pronta all'uso, 1.000 mg/L di analita. Tracciabile ai SRM del NIST (vedere N° Cat. soluzione standard Certipur®) | 2) Standard propri. È possibile scaricare i protocolli per preparare tali standard dal nostro sito www.merckmillipore.com/aaf > Fotometria > Settore d'attività/Campione = Standard | 3) Per fotometri di altri produttori

Parametri A-C

	Kit analitico	N° Cat.	N° Cat.	N° Cat. soluzione	Standard	N° Cat. sol. standard
	Anata tatala liit in avvatta	kit analit.	CombiCheck	standard (CRM)	alternativo 2)	Certipur [®]
A	Azoto totale, kit in cuvetta	1.00613.0001	1.14695.0001	1.25043.0100 1.25044.0100		
	Azoto totale, kit in cuvetta	1.14537.0001	1.14695.0001	1.25043.0100 1.25044.0100	2)	
	Azoto totale, kit in cuvetta	1.14763.0001	1.14689.0001	1.25044.0100 1.25045.0100	2)	
B	Biossido di cloro, kit	1.00608.0001			DIN EN ISO 7393 ²⁾	
	BOD, kit in cuvetta	1.00687.0001			EN 1899, 210 mg/L 1.00718.0001	
	Boro, kit in cuvetta	1.00826.0001		1.33005.0100	1)	1.19500.0100
	Boro, kit	1.14839.0001			1)	1.19500.0100
	Bromati			1.33006.0100 1.33007.0100	2)	
	Bromo, kit	1.00605.0001			DIN EN ISO 7393 ²⁾	
C	Cadmio, kit	1.01745.0001	1.18700.0001	1.32228.0100		1.19777.0100
	Cadmio, kit in cuvetta	1.14834.0001	1.18700.0001	1.32228.0100	1)	1.19777.0100
	Calcio, kit	1.00049.0001			1)	1.19778.0100
	Calcio, kit	1.14815.0001			1)	1.19778.0100
	Calcio, kit in cuvetta	1.00858.0001			NIST3109A ²⁾	
	Capacità acida fino a pH 4,3 (alcalinità totale), kit in cuvetta	1.01758.0001			38227 ²⁾	
	Cianuri, kit	1.09701.0001			1)	1.19533.0500
	Cianuri, kit in cuvetta	1.02531.0001			1)	1.19533.0500
	Cianuri, kit in cuvetta	1.14561.0001			1)	1.19533.0500
	Cloro (libero), kit	1.00598.0002 1.00598.0001			DIN EN ISO 7393 2)	
	Cloro (libero), kit in cuvetta	1.00595.0001			DIN EN ISO 7393 ²⁾	
	Cloro (totale), kit	1.00602.0001 1.00602.0002			DIN EN ISO 7393 2)	
	Cloro (libero e totale), kit	1.00599.0001			DIN EN ISO 7393 2)	
	Cloro (libero e totale), kit in cuvetta	1.00597.0001			DIN EN ISO 7393 ²⁾	
	Cloro (libero), buste di polvere 3)	1.19254.0001 1.19256.0001			DIN EN ISO 7393 ²⁾	
	Cloro (totale), buste di polvere 3)	1.19257.0001 1.19258.0001			DIN EN ISO 7393 ²⁾	
	Cloruri, kit	1.01807.0001		1.33010.0100	1)	1.19897.0500
	Cloruri, kit	1.14897.0001 1.14897.0002	1.14696.0001	1.32229.0100 1.32230.0100	1)	1.19897.0500
	Cloruri, kit in cuvetta	1.01804.0001		1.33010.0100	1)	1.19897.0500
	Cloruri, kit in cuvetta	1.14730.0001	1.14676.0001 1.14675.0001	1.32229.0100 1.32230.0100	1)	1.19897.0500

Assicurazione della Qualità Analitica con il sistema Spectroquant®

Parametri C-F

	Kit analitico	N° Cat. kit analit.	N° Cat. CombiCheck	N° Cat. soluzione standard (CRM)	Standard alternativo	N° Cat. sol. standard Certipur®
C	COD, kit in cuvetta	1.14560.0001	1.14695.0001	1.25028.0100	2)	·
	COD, kit in cuvetta	1.01796.0001	1.14695.0001	1.25028.0100	2)	
	COD, kit in cuvetta	1.14540.0001	1.14676.0001	1.25029.0100	2)	
	COD, kit in cuvetta	1.14895.0001	1.14696.0001	1.25029.0100 1.25030.0100	2)	
	COD, kit in cuvetta	1.14690.0001	1.14696.0001	1.25029.0100 1.25030.0100 1.25031.0100	2)	
	COD, kit in cuvetta	1.14541.0001	1.14675.0001	1.25029.0100 1.25030.0100 1.25031.0100 1.25032.0100	2)	
	COD, kit in cuvetta	1.14691.0001	1.14738.0001	1.25031.0100 1.25032.0100 1.25033.0100	2)	
	COD, kit in cuvetta	1.14555.0001	1.14689.0001	1.25032.0100 1.25033.0100 1.25034.0100	2)	
	COD, kit in cuvetta	1.01797.0001		1.25035.0100	2)	
	COD, kit in cuvetta 3)	1.18750.0001	1.14695.0001	1.25028.0100	2)	
	COD, kit in cuvetta 3)	1.18751.0001	1.14676.0001	1.25029.0100	2)	
	COD, kit in cuvetta 3)	1.18752.0001	1.14675.0001	1.25029.0100	2)	
	COD, kit in cuvetta 3)	1.18753.0001	1.14689.0001	1.25032.0100	2)	
	COD (senza Hg), kit in cuvetta	1.09772.0001		1.25028.0100 1.25029.0100	2)	
	COD (senza Hg), kit in cuvetta	1.09773.0001		1.25030.0100 1.25031.0100 1.25032.0100	2)	
	COD, kit in cuvetta per acque di mare/ad alto contenuto di cloruri	1.17058.0001			2)	
	COD, kit in cuvetta per acque di mare/ad alto contenuto di cloruri	1.17059.0001			2)	
	Cromati, kit in cuvetta	1.14552.0001		1.33013.0100	1)	1.19780.0500
	Cromati, kit	1.14758.0001		1.33012.0100	1)	1.19780.0500
D	Durezza residua, kit in cuvetta	1.14683.0001			1)	1.19778.0100
	Durezza totale, kit in cuvetta	1.00961.0001			NIST3109A 2)	
F	Fenolo, kit	1.00856.0001			1524806 ²⁾	
	Fenolo, kit in cuvetta	1.14551.0001			1524806 ²⁾	
	Ferro, kit	1.14761.0002 1.14761.0001	1.18700.0001	1.33014.0100 1.33018.0100	1)	1.19781.0100
	Ferro, kit	1.00796.0001	1.18700.0001	1.33014.0100 1.33018.0100	1)	1.19781.0100
	Ferro, kit in cuvetta	1.14549.0001	1.18700.0001	1.33018.0100 1.33019.0100	1)	1.19781.0100

¹⁾ Soluzione standard, pronta all'uso, 1.000 mg/L di analita. Tracciabile ai SRM del NIST (vedere N° Cat. soluzione standard Certipur*) | 2) Standard propri. È possibile scaricare i protocolli per preparare tali standard dal nostro sito www.merckmillipore.com/aaf > Fotometria > Settore d'attività/Campione = Standard | 3) Per fotometri di altri produttori

Parametri F-N

	Kit analitico	N° Cat. kit analit.	N° Cat. CombiCheck	N° Cat. soluzione standard (CRM)	Standard alternativo	N° Cat. sol. standard Certipur®
F	Ferro, kit in cuvetta	1.14896.0001			1)	1.19781.0100
	Fluoruri, kit	1.00822.0250		1.32234.0100	1)	1.19814.0500
	Fluoruri, kit	1.14598.0001 1.14598.0002		1.32234.0100	1)	1.19814.0500
	Fluoruri, kit in cuvetta	1.00809.0001		1.32234.0100	1)	1.19814.0500
	Formaldeide, kit	1.14678.0001			2)	
	Formaldeide, kit in cuvetta	1.14500.0001			2)	
	Fosfati (orto-fosfati), kit	1.14848.0001 1.14848.0002	1.14676.0001		1)	1.19898.0500
	Fosfati (orto-fosfati), kit	1.00798.0001			1)	1.19898.0500
	Fosfati (orto-fosfati), kit	1.14842.0001			1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.00474.0001	1.14676.0001		1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.14543.0001	1.14676.0001		1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.00475.0001	1.14675.0001 1.14738.0001		1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.14729.0001	1.14675.0001 1.14738.0001		1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.00616.0001			1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.00673.0001			1)	1.19898.0500
	Fosfati (orto-fosfati), kit in cuvetta	1.14546.0001			1)	1.19898.0500
	Fosforo (totale), kit in cuvetta	1.14543.0001	1.14676.0001	1.25046.0100 1.25047.0100	1)	
	Fosforo (totale), kit in cuvetta	1.14729.0001	1.14676.0001	1.25047.0100 1.25048.0100	1)	
	,	1.00673.0001		1.25048.0100 1.25049.0100	1)	
I	Idrazina, kit	1.09711.0001			2)	
	Iodio, kit	1.00606.0001			DIN EN ISO 7393 ²⁾	
M	Magnesio, kit in cuvetta	1.00815.0001		NIST 3131A	2)	
	Manganese, kit	1.01846.0001	1.18700.0001		1)	1.19789.0100
	Manganese, kit	1.14770.0001 1.14770.0002	1.18700.0001	1.32237.0100 1.32238.0100	1)	1.19789.0100
	Manganese, kit in cuvetta	1.00816.0001	1.18700.0001	1.32238.0100	1)	1.19789.0100
	Molibdeno, kit in cuvetta	1.00860.0001			1)	1.70227.0001
	Monoclorammina, kit	1.01632.0001			2)	
N	Nichel, kit	1.14785.0001	1.18701.0001		1)	1.09989.0001
	Nichel, kit in cuvetta	1.14554.0001	1.18701.0001		1)	1.09989.0001

Assicurazione della Qualità Analitica con il sistema Spectroquant®

Parametri N-R

	Kit analitico	N° Cat. kit analit.	N° Cat. CombiCheck	N° Cat. soluzione standard (CRM)	Standard alternativo	N° Cat. sol. standard Certipur®
N	Nitrati, kit	1.01842.0001		1.32241.0100 1.32242.0100	1)	1.19811.0500
	Nitrati, kit	1.14773.0001	1.14676.0001 1.14675.0001	1.25036.0100 1.25037.0100 1.25038.0100	1)	1.19811.0500
	Nitrati, kit	1.09713.0001 1.09713.0002	1.14676.0001 1.14675.0001	1.25036.0100 1.25037.0100 1.25038.0100	1)	1.19811.0500
	Nitrati, kit in cuvetta	1.14764.0001	1.14738.0001	1.25037.0100 1.25038.0100 1.25039.0100	1)	1.19811.0500
	Nitrati, kit in cuvetta	1.00614.0001		1.25039.0100 1.25040.0100	1)	1.19811.0500
	Nitrati, kit in cuvetta	1.14563.0001	1.14675.0001	1.25037.0100 1.25038.0100	1)	1.19811.0500
	Nitrati, kit in cuvetta	1.14542.0001	1.14675.0001	1.25037.0100 1.25038.0100	1)	1.19811.0500
	Nitrati, kit in cuvetta per acque di mare	1.14556.0001	1.14676.0001	1.25036.0100 1.25037.0100	1)	1.19811.0500
	Nitrati, kit per acque di mare	1.14942.0001	1.14675.0001	1.25036.0100 1.25037.0100 1.25038.0100	1)	1.19811.0500
	Nitriti, kit	1.14776.0002 1.14776.0001		1.25041.0100 1.33021.0100	1)	1.19899.0500
	Nitriti, kit in cuvetta	1.14547.0001		1.25041.0100	1)	1.19899.0500
	Nitriti, kit in cuvetta	1.00609.0001		1.25042.0100	1)	1.19899.0500
0	Oro, kit	1.14821.0002			1)	1.70216.0100
	Ossigeno, kit in cuvetta	1.14694.0001			2)	
	Ozono, kit	1.00607.0001 1.00607.0002			DIN EN ISO 7393 ²⁾	
P	Perossido di idrogeno, kit	1.18789.0001			2)	
	Perossido di idrogeno, kit in cuvetta	1.14731.0001			2)	
	pH, kit in cuvetta	1.01744.0001			Soluzione tam- pone pH 7,00 / 1.09439.1000	
	Piombo, kit in cuvetta	1.14833.0001	1.18701.0001		1)	1.19776.0100
	Piombo, kit	1.09717.0001	1.18701.0001	1.33003.0100 1.33004.0100	1)	1.19776.0100
	Potassio, kit in cuvetta	1.14562.0001			1)	1.70230.0100
	Potassio, kit in cuvetta	1.00615.0001			1)	1.70230.0100
R	Rame, kit in cuvetta	1.14553.0001	1.18700.0001		1)	1.19786.0100
	Rame, kit	1.14767.0001	1.18700.0001			1.19786.0100

¹⁾ Soluzione standard, pronta all'uso, 1.000 mg/L di analita. Tracciabile ai SRM del NIST (vedere N° Cat. soluzione standard Certipur®) | 2) Standard propri. È possibile scaricare i protocolli per preparare tali standard dal nostro sito www.merckmillipore.com/aaf > Fotometria > Settore d'attività/Campione = Standard | 3) Per fotometri di altri produttori

Parametri S-Z

	Kit analitico	N° Cat. kit analit.	N° Cat. CombiCheck	N° Cat. soluzione standard (CRM)	Standard alternativo	N° Cat. sol. standard Certipur®
S	Sequestranti dell'ossigeno, kit	1.19251.0001			2)	
	Silicati (acido silicico), kit	1.01813.0001		1.32244.0100	1)	1.70236.0100
	Silicati (acido silicico), kit	1.14794.0001			1)	1.70236.0100
	Silicati (acido silicico), kit	1.00857.0001			1)	1.70236.0100
	Sodio, kit in cuvetta	1.00885.0001			2)	1.19897.0500
	Solfati, kit	1.02537.0001 1.02537.0002	1.14676.0001	1.25050.0100 1.25051.0100	1)	1.19813.0500
	Solfati, kit	1.01812.0001			1)	1.19813.0500
	Solfati, kit	1.14791.0001	1.14676.0001	1.25050.0100 1.25051.0100	1)	1.19813.0500
	Solfati, kit in cuvetta	1.14548.0001	1.14676.0001	1.25050.0100 1.25051.0100	1)	1.19813.0500
	Solfati, kit in cuvetta	1.00617.0001	1.14676.0001	1.25051.0100 1.25052.0100	1)	1.19813.0500
	Solfati, kit in cuvetta	1.14564.0001	1.14675.0001	1.25051.0100 1.25052.0100 1.25053.0100	1)	1.19813.0500
	Solfati, kit in cuvetta	1.02532.0001			1)	1.19813.0500
	Solfiti, kit	1.01746.0001			2)	
	Solfiti, kit in cuvetta	1.14394.0001			2)	
	Solfuri, kit	1.14779.0001			2)	
	Stagno, kit in cuvetta	1.14622.0001			2)	1.70242.0100
T	Tensioattivi (anionici), kit in cuvetta	1.02552.0001			2)	
	Tensioattivi (cationici), kit in cuvetta	1.01764.0001			1102974 ²⁾	
	Tensioattivi (non ionici), kit in cuvetta	1.01787.0001		1.33022.0100 1.33023.0100	2)	
	TOC, kit in cuvetta	1.14878.0001		1.32247.0100 1.32248.0100 1.32249.0100	1)	1.09017.0100
	TOC, kit in cuvetta	1.14879.0001		1.32251.0100 1.32252.0100 1.32253.0100	1)	1.09017.0100
Z	Zinco, kit in cuvetta	1.00861.0001	1.18701.0001		1)	1.19806.0100
	Zinco, kit in cuvetta	1.14566.0001			1)	1.19806.0100
	Zinco, kit	1.14832.0001	1.18701.0001		1)	1.19806.0100

Assicurazione della Qualità Analitica con Spectroquant® CombiCheck

I CombiCheck contengono soluzioni standard multiparametriche per il controllo dell'intero sistema, dai kit analitici e gli strumenti, fino alle procedure operative personali. Ogni confezione CombiCheck contiene una soluzione standard e una soluzione di arricchimento, entrambe direttamente tracciabili agli standard primari del NIST.

Quando si ottiene la concentrazione specificata per la soluzione standard, l'intero sistema analitico funziona correttamente. Se si osservano deviazioni dal valore stabilito, utilizzare la soluzione di arricchimento per identificare gli errori dovuti a sostanze interferenti nella matrice del campione. Nel caso il tasso di recupero sia insufficiente (oltre le tolleranze specificate), analizzare ed eliminare la causa adottando le contromisure opportune, come il pretrattamento del campione.

CombiCheck	V

					CombiC	heck
N° Cat. 1.14676.0001	Spectroquant® Co	ombiChec	k 10			
	Parametro	Conce	ntrazione e tolleranza	Utilizzabile con i kit	Soluzione	Numero di
		operat	iva	analitici N° Cat.	standard [mL]	controlli
Soluzione standard	Ammonio	4,00	± 0.30 mg/L NH ₄ -N	1.14558.0001	1,0	96
Reagente R-1	Cloruri	25	±6 mg/L Cl	1.14730.0001	1,0	96
	COD	80	±12 mg/L COD	1.14540.0001	3,0	32
		80	±12 mg/L COD	1.18751.0001	2,0	48
	Fosfati 4)	0,80	± 0.08 mg/L PO $_4$ -P	1.00474.0001	5,0	19
		0,80	± 0.08 mg/L PO $_4$ -P	1.14543.0001	5,0	19
		0,80	± 0.08 mg/L PO $_4$ -P	1.14848.0001/ .0002 2)	5,0	19
		0,80	± 0.08 mg/L PO $_4$ -P	1.14848.0001 3)/ .0002 3)	10,0	9
	Nitrati	2,50	±0,25 mg/L NO ₃ -N	1.14556.0001	2,0	48
		2,50	±0,25 mg/L NO ₃ -N	1.14773.0001 ²⁾	1,5	64
		2,50	$\pm 0,25$ mg/L NO ₃ -N	1.09713.0001 3)	1,0	96
	Solfati	100	±15 mg/L SO ₄ ²⁻	1.14548.0001	5,0	19
		100	±15 mg/L SO ₄ ²⁻	1.00617.0001	2,0	48
		100	±15 mg/L SO ₄ ²⁻	1.14791.0001	2,5	38
		100	±15 mg/L SO ₄ ²⁻	1.02537.0001	5,0	19
Soluzione di	Ammonio	3,00	±0,25 mg/L NH ₄ -N	1.14558.0001	0,10	280
arricchimento	Cloruri	25	±6 mg/L Cl	1.14730.0001	0,10	280
Reagente R-2 (per l'aggiunta ai campioni)	COD	30	±8 mg/L COD	1.14540.0001	0,10	280
.,		45	±8 mg/L COD	1.18751.0001	0,10	280
	Fosfati 4)	0,60	$\pm 0,07$ mg/L PO $_{\scriptscriptstyle 4}$ -P	1.00474.0001	0,10	280
		0,60	$\pm 0,07$ mg/L PO $_4$ -P	1.14543.0001	0,10	280
		0,30	$\pm 0,05$ mg/L PO ₄ -P	1.14848.0001/ .0002 3)	0,10	280
	Nitrati	1,50	±0,20 mg/L NO ₃ -N	1.14556.0001	0,10	280
		2,00	±0,40 mg/L NO ₃ -N	1.14773.0001 ²⁾	0,10	280
		3,00	±0,50 mg/L NO ₃ -N	1.09713.0001 3)	0,10	280
		6,0	±1,0 mg/L NO ₃ -N	1.09713.0001 1) 2)	0,10	280
	Solfati	40	±5 mg/L SO ₄ 2-	1.14548.0001	0,10	280
		100	±15 mg/L SO ₄ 2-	1.00617.0001	0,10	280
		80	±10 mg/L SO ₄ ²⁻	1.14791.0001 1)	0,10	280
		40	±5 mg/L SO ₄ 2-	1.02537.0001	0,10	280
			•			

¹⁾ con una cuvetta rettangolare da 10 mm, N° Cat. 1.14946.0001 3) con una cuvetta rettangolare da 50 mm, N° Cat. 1.14944.0001

²⁾ con una cuvetta rettangolare da 20 mm, N° Cat. 1.14947.0001 4) consente di controllare soltanto la determinazione degli orto-fosfati

Spectroquant® CombiCheck 20						N° Cat. 1.14675.0001
Parametro	Conce operat	ntrazione e tolleranza tiva	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli	
Ammonio	12,0	$\pm 1,0$ mg/L NH $_{\scriptscriptstyle 4}$ -N	1.14544.0001	0,50	192	Soluzione standard
Cloruri	60	±10 mg/L Cl	1.14730.0001	1,0	96	Reagente R-1
COD	750	±75 mg/L COD	1.14541.0001	3,0	32	
	750	±75 mg/L COD	1.18752.0001	2,0	48	
Fosfati 4)	8,0	±0,7 mg/L PO ₄ -P	1.00475.0001	1,0	96	
	8,0	±0,7 mg/L PO ₄ -P	1.14729.0001	1,0	96	
Nitrati	9,0	± 0.9 mg/L NO $_{\scriptscriptstyle 3}$ -N	1.14563.0001	1,0	96	
	9,0	± 0.9 mg/L NO_3 -N	1.14542.0001	1,5	64	
	9,0	± 0.9 mg/L NO $_{3}$ -N	1.09713.0001/ .0002 1)	0,50	192 1)	
	9,0	± 0.9 mg/L NO_3 -N	1.14773.0001 1)	1,5	64	
	9,0	± 0.9 mg/L NO_3 -N	1.14942.0001	1,0	96	
Solfati	500	±75 mg/L SO ₄ 2-	1.14564.0001	1,0	96	
Ammonio	8,0	±0,8 mg/L NH ₄ -N	1.14544.0001	0,10	280	Soluzione di
Cloruri	40	±7 mg/L Cl	1.14730.0001	0,10	280	arricchimento
COD	200	±40 mg/L COD	1.14541.0001	0,10	280	Reagente R-2 (per l'aggiunta ai campioni)
	300	±40 mg/L COD	1.18752.0001	0,10	280	(, , , , , , , , , , , , , , , , , , ,
Fosfati 4)	5,0	$\pm 0,5$ mg/L PO ₄ -P	1.00475.0001	0,10	280	
	5,0	±0,5 mg/L PO ₄ -P	1.14729.0001	0,10	280	
Nitrati	7,5	±0,8 mg/L NO ₃ -N	1.14563.0001	0,10	280	
	5,0	± 0.6 mg/L NO $_{3}$ -N	1.14542.0001	0,10	280	
	15,0	$\pm 1,5$ mg/L NO_3 -N	1.09713.0001/ .0002	0,10	280	
	5,0	± 0.6 mg/L NO $_{3}$ -N	1.14773.0001 1)	0,10	280	
	7,5	± 0.8 mg/L NO_3 -N	1.14942.0001 1)	0,10	280	
Solfati	150	±30 mg/L SO ₄ ²⁻	1.14564.0001	0,10	280	

						CombiCheck O
Spectroquant® Com	N° Cat. 1.14695.0001					
Parametro	Concen	trazione e tolleranza va	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli	
Ammonio	1,000 1,00	\pm 0,100 mg/L NH ₄ -N \pm 0,10 mg/L NH ₄ -N	1.14739.0001 1.14752.0002/ .0001 ¹⁾	5,0 5,0	19 19	Soluzione standard Reagente R-1
Azoto	5,0 5,0	±0,7 mg/L N ±0,7 mg/L N	1.00613.0001 1.14537.0001	10 10	9	
COD	20,0 20,0 20,0	±4,0 mg/L COD ±4,0 mg/L COD ±4,0 mg/L COD	1.14560.0001 1.01796.0001 1.18750.0001	3,0 2,0 2,0	32 48 48	
Ammonio	1,000 1,00	±0,100 mg/L NH ₄ -N ±0,10 mg/L NH ₄ -N	1.14739.0001 1.14752.0002/ .0001 ¹⁾	0,10 0,10	280 280	Soluzione di arricchimento
Azoto	3,0 3,0	± 0.5 mg/L N ± 0.5 mg/L N	1.00613.0001 1.14537.0001	0,10 0,10	280 280	Reagente R-2 (per l'aggiunta ai campioni)
COD	10,0 15,0 15,0	±3,0 mg/L COD ±3,0 mg/L COD ±3,0 mg/L COD	1.14560.0001 1.01796.0001 1.18750.0001	0,10 0,10 0,10	280 280 280	

Assicurazione della Qualità Analitica con Spectroquant® CombiCheck

CombiCheck	O	U

					Combicned	K —
N° Cat. 1.14696.0001	Spectroquant®	CombiChec	k 60			
	Parametro	Conce operat	ntrazione e tolleranza tiva	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli
Soluzione standard	Cloruri	125	±13 mg/L Cl ⁻	1.14897.0001/ .0002	1,0	96
Reagente R-1	COD	250	±25 mg/L COD	1.14690.0001	2,0	48
		250	±20 mg/L COD	1.14895.0001	2,0	48
Soluzione di	Cloruri	50	±7 mg/L Cl ⁻	1.14897.0001/ .0002	0,10	280
arricchimento	COD	75	±15 mg/L COD	1.14690.0001	0,10	280
Reagente R-2 (per l'aggiunta ai campioni)		75	±10 mg/L COD	1.14895.0001	0,10	280

CombiCheck 70

N° Cat. 1.14689.0001	Spectroquant® Co	mbiChecl	k 70			
	Parametro	Concer operat	ntrazione e tolleranza iva	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli
Soluzione standard	Ammonio	50,0	±5,0 mg/L NH ₄ -N	1.14559.0001	0,10	960
Reagente R-1	Ammonio	50,0	±5,0 mg/L NH ₄ -N	1.00683.0001 1) 5)	0,20	480
	(2,0 - 75,0 mg/L)					
	Ammonio	50	±5 mg/L NH ₄ -N	1.00683.0001 1) 5)	0,10	960
	(5 - 150 mg/L)					
	Azoto	50	±7 mg/L N	1.14763.0001	1,0	96
	COD	5.000	±400 mg/L COD	1.14555.0001	1,0	96
		5.000	±400 mg/L COD	1.18753.0001	0,20	480
Soluzione di	Ammonio	20,0	±2,0 mg/L NH ₄ -N	1.14559.0001	0,10	280
arricchimento	Ammonio	10,0	± 1.0 mg/L NH $_{\scriptscriptstyle 4}$ -N	1.00683.0001 1) 5)	0,10	280
Reagente R-2 (per l'aggiunta ai campioni)	(2,0 - 75,0 mg/L)					
(60. 1233)	Ammonio	20	±2 mg/L NH ₄ -N	1.00683.0001 1) 5)	0,10	280
	(5 - 150 mg/L)					
	Azoto	20	±6 mg/L N	1.14763.0001	0,10	280
	COD	2.000	±200 mg/L COD	1.14555.0001	0,10	280

CombiCheck 80

N° Cat. 1.14738.0001	Spectroquant®	CombiCheck	c 80			
	Parametro	Concer operati	itrazione e tolleranza va	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli
Soluzione standard	COD	1.500	±150 mg/L COD	1.14691.0001	2,0	48
Reagente R-1	Fosfati 4)	15,0	±1,0 mg/L PO ₄ -P	1.00475.0001	1,0	96
		15,0	$\pm 1,0$ mg/L PO $_4$ -P	1.14729.0001	1,0	96
	Nitrati	25,0	±2,5 mg/L NO ₃ -N	1.14764.0001	0,50	190
Soluzione di	COD	1.000	±100 mg/L COD	1.14691.0001	0,10	280
arricchimento	Fosfati 4)	5,0	$\pm 0,5$ mg/L PO $_{\scriptscriptstyle 4}$ -P	1.00475.0001	0,10	280
Reagente R-2 (per l'aggiunta ai campioni)		5,0	$\pm 0,5$ mg/L PO $_{\scriptscriptstyle 4}$ -P	1.14729.0001	0,10	280
(r 33 21	Nitrati	10,0	±1,5 mg/L NO ₃ -N	1.14764.0001	0,10	280

- 3) con una cuvetta rettangolare da 50 mm, N° Cat. 1.14944.0001
- 1) con una cuvetta rettangolare da 10 mm, N° Cat. 1.14946.0001 4) consente di controllare soltanto la determinazione degli orto-fosfati
- 2) con una cuvetta rettangolare da 20 mm, N° Cat. 1.14947.0001 5) quando si utilizza l'AutoSelector, intervallo di misura 5 150 mg/L

						Combicneck
Spectroquant® Com	N° Cat. 1.18700.0001					
Parametro	Concer	itrazione e tolleranza va	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli	
Cadmio	0,250 0,250	±0,030 mg/L Cd ±0,030 mg/L Cd	1.01745.0001 ¹⁾ 1.14834.0001	10,0 5,0	9 19	Soluzione standard Reagente R-1
Ferro	1,00 1,00 1,00	±0,15 mg/L Fe ±0,15 mg/L Fe ±0,15 mg/L Fe	1.14549.0001 1.14761.0001 1) 1.00796.0001 1)	5,0 5,0 8,0	19 19 12	
Manganese	1,00 1,00 1,00	±0,15 mg/L Mn ±0,15 mg/L Mn ±0,15 mg/L Mn	1.00816.0001 1.14770.0001 ³⁾ 1.01846.0001 ¹⁾	7,0 10,0 8,0	13 9 12	
Rame	2,00 2,00	±0,20 mg/L Cu ±0,20 mg/L Cu	1.14553.0001 1.14767.0001 1)	5,0 5,0	19 19	
Cadmio	0,100 0,200	±0,015 mg/L Cd ±0,030 mg/L Cd	1.01745.0001 ¹⁾ 1.14834.0001	0,10 0,10	280 280	Soluzione di arricchimento
Ferro	3,00 3,00 1,88	±0,30 mg/L Fe ±0,30 mg/L Fe ±0,20 mg/L Fe	1.14549.0001 1.14761.0001 ¹⁾ 1.00796.0001 ¹⁾	0,10 0,10 0,10	280 280 280	Reagente R-2 (per l'aggiunta ai campioni)
Manganese	1,43 1,00 1,25	±0,15 mg/L Mn ±0,15 mg/L Mn ±0,15 mg/L Mn	1.00816.0001 1.14770.0001 ³⁾ 1.01846.0001 ¹⁾	0,10 0,10 0,10	280 280 280	
Rame	3,00 3,00	±0,30 mg/L Cu ±0,30 mg/L Cu	1.14553.0001 1.14767.0001 ¹⁾	0,10 0,10	280 280	

						CombiCheck O
Spectroquant® Com	biCheck	c 100				N° Cat. 1.18701.0001
Parametro	Concer operati	ntrazione e tolleranza iva	Utilizzabile con i kit analitici N° Cat.	Soluzione standard [mL]	Numero di controlli	
Alluminio	0,40 0,40	±0,05 mg/L AI ±0,05 mg/L AI	1.00594.0001 1.14825.0001 ¹⁾	6,0 5,0	16 19	Soluzione standard Reagente R-1
Nichel	2,00 2,00	±0,20 mg/L Ni ±0,20 mg/L Ni	1.14554.0001 1.14785.0001 ¹⁾	5,0 5,0	19 19	
Piombo	2,00 2,00	±0,20 mg/L Pb ±0,20 mg/L Pb	1.14833.0001 1.09717.0001 ¹⁾	5,0 8,0	19 11	
Zinco	0,750 0,75	±0,150 mg/L Zn ±0,15 mg/L Zn	1.00861.0001 1.14832.0001	10,0 5,0	9 19	
Alluminio	0,20 0,24	±0,03 mg/L Al ±0,04 mg/L Al	1.00594.0001 1.14825.0001 ¹⁾	0,10 0,10	280 280	Soluzione di arricchimento
Nichel	2,00 2,00	±0,20 mg/L Ni ±0,20 mg/L Ni	1.14554.0001 1.14785.0001 ¹⁾	0,10 0,10	280 280	Reagente R-2 (per l'aggiunta ai campioni)
Piombo	1,00 0,63	±0,15 mg/L Pb ±0,10 mg/L Pb	1.14833.0001 1.09717.0001 ¹⁾	0,10 0,10	280 280	
Zinco	0,250 0,50	±0,050 mg/L Zn ±0,10 mg/L Zn	1.00861.0001 1.14832.0001	0,10 0,10	280 280	

Materiali di Riferimento Certificati per applicazioni fotometriche

NESSUNA DILUIZIONE. NESSUN DUBBIO. NESSUN RITARDO.

PRECISO
CONTROLLO
DELLA QUALITÀ
ANALITICA

NESSUNA DILUIZIONE NECESSARIA

H088375830

± 3.0 mg/l CI

DIRETTAMENTE TRACCIABILI AL NIST

Concentrazione lotto-specifica esatta e incertezza di misura espansa

1.32230.0100

Chloride St

traceable to SF 50 mg/l CI in H

Chlorid-Stand Cloruro - solu Chlorure solu

Wade in Germany

Merck KGaA, 64271 Da Germany, Tel. +49(0)61 BMD Millipore Corporati 39 Concord Road, Belli USA, Tel. +1-978-715-4

Veda anche i nostri

CRM

KPOME93

(pagina 107)

Provi la precisione assoluta nel controllo qualità fotometrico grazie ai nostri materiali di riferimento diluiti, pronti all'uso, certificati (CRM). Grazie alle loro concentrazioni esatte, all'incertezza di misura espansa e alla tracciabilità diretta ai materiali di riferimento primari del NIST, i nostri CRM garantiscono risultati corretti e comparabili in tutto il mondo.

Una gamma completa con tutti i parametri per il Controllo della Qualità Analitica nelle analisi fotometriche di acque reflue, potabili e di processo.

Certificati d'Analisi dettagliati per ogni CRM semplificano l'accreditamento

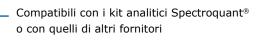
andard Solution,

RM from NIST -

ardlösung, CRM ción patrón, CRM

tion étalon, CRM

rmstadt


51 72-2440

rica MA 01821

La combinazione perfetta per le analisi dell'acqua: usi le nostre soluzioni standard certificate con gli spettrofotometri Spectroquant® Prove.

Per saperne di più su: Prove (pagina 36) e CRM (pagina 104)

I CRM diluiti, pronti all'uso, consentono di risparmiare tempo ed evitano errori di diluizione

Lunga durata, 24 mesi

Direttamente riferibili agli standard di misura primari del NIST

Ideali per la convalida dei metodi previsti dalle norme internazionali: ISO, EN, EPHA, and EPA

Definizioni

Tracciabilità

"Proprietà del risultato di una misura per cui esso può essere messo in relazione con un riferimento stabilito, attraverso una catena ininterrotta e documentata di calibrazioni, ognuna delle quali contribuisce all'incertezza della misura." 1)

Materiale di riferimento certificato (CRM)

"Materiale di riferimento (RM) caratterizzato attraverso una procedura metrologicamente valida per una o più proprietà specificate, accompagnato da un certificato che fornisca per ciascuna di tali proprietà il valore, l'incertezza associata e una asserzione della tracciabilità metrologica." ²⁾

Standard di misura primario

"Campione di misura che è stato designato o riconosciuto con ampio consenso come rappresentante delle più elevate qualità metrologiche ed il cui valore è accettato senza riferimento ad altri campioni della medesima grandezza, in un contesto specificato." ²⁾

Standard di misura secondario

"Campione di misura il cui valore è assegnato per confronto con uno standard di misura primario della medesima grandezza." ²⁾

¹⁾ ISO Guide 99:2007; International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM)

²⁾ ISO/Guide 30:2015; Reference Materials – Selected Terms and Definitions

Materiali di Riferimento Certificati per applicazioni fotometriche

Soluzioni standard (100 mL in $\rm H_2O$), riferibili agli SRM del NIST

	Prodotto	Concentrazione	Incertezza di misura espansa	N° Catalogo
A	Alluminio, soluzione standard	0,0500 mg/L Al	± 0,0020 mg/L Al	1.32226.0100
	Alluminio, soluzione standard	0,200 mg/L Al	± 0,006 mg/L AI	1.32225.0100
	Ammonio, soluzione standard	0,250 mg/L NH ₄	± 0,011 mg/L NH ₄	1.32227.0100
	Ammonio, soluzione standard	0,400 mg/L NH ₄ -N	\pm 0,012 mg/L NH ₄ -N	1.25022.0100
	Ammonio, soluzione standard	1,00 mg/L NH ₄ -N	± 0,04 mg/L NH ₄ -N	1.25023.0100
	Ammonio, soluzione standard	2,00 mg/L NH ₄ -N	\pm 0,07 mg/L NH ₄ -N	1.25024.0100
	Ammonio, soluzione standard	6,00 mg/L NH ₄ -N	\pm 0,13 mg/L NH ₄ -N	1.25025.0100
	Ammonio, soluzione standard	12,0 mg/L NH ₄ -N	\pm 0,4 mg/L NH $_{4}$ -N	1.25026.0100
	Ammonio, soluzione standard	50,0 mg/L NH ₄ -N	± 1,2 mg/L NH ₄ -N	1.25027.0100
	Arsenico, soluzione standard	1,00 mg/L As	± 0,05 mg/L As	1.33002.0250 1) 2)
	Azoto (totale), soluzione standard	2,50 mg/L N	± 0,06 mg/L N	1.25043.0100
	Azoto (totale), soluzione standard	12,0 mg/L N	± 0,3 mg/L N	1.25044.0100
	Azoto (totale), soluzione standard	100 mg/L N	± 3 mg/L N	1.25045.0100
B	Boro, soluzione standard	1,00 mg/L B	± 0,06 mg/L B	1.33005.0100
	Bromati, soluzione standard	$0,0100 \text{ mg/L BrO}_3$	\pm 0,0006 mg/L BrO $_{\scriptscriptstyle 3}$	1.33006.0100
	Bromati, soluzione standard	0,1000 mg/L BrO ₃	\pm 0,0040 mg/L BrO $_{\scriptscriptstyle 3}$	1.33007.0100
C	Cadmio, soluzione standard	0,00500 mg/L Cd	± 0,00020 mg/L Cd	1.33008.0100 ¹⁾
	Cadmio, soluzione standard	0,100 mg/L Cd	± 0,003 mg/L Cd	1.32228.0100
	Cloruri, soluzione standard	0,100 mg/L Cl	± 0,006 mg/L Cl ⁻	1.33009.0100
	Cloruri, soluzione standard	1,00 mg/L Cl	± 0,04 mg/L Cl ⁻	1.33010.0100
	Cloruri, soluzione standard	2,50 mg/L Cl	± 0,08 mg/L Cl ⁻	1.33011.0100
	Cloruri, soluzione standard	10,0 mg/L Cl	± 0,5 mg/L Cl ⁻	1.32229.0100
	Cloruri, soluzione standard	50 mg/L Cl	± 3 mg/L Cl ⁻	1.32230.0100
	Cloruri, soluzione standard	250 mg/L Cl	± 8 mg/L Cl ⁻	1.32231.0100
	COD, soluzione standard	20,0 mg/L	± 0,7 mg/L	1.25028.0100
	COD, soluzione standard	100 mg/L	± 3 mg/L	1.25029.0100
	COD, soluzione standard	200 mg/L	± 4 mg/L	1.25030.0100
	COD, soluzione standard	400 mg/L	± 5 mg/L	1.25031.0100
	COD, soluzione standard	1.000 mg/L	± 11 mg/L	1.25032.0100
	COD, soluzione standard	2.000 mg/L	± 32 mg/L	1.25033.0100
	COD, soluzione standard	8.000 mg/L	± 68 mg/L	1.25034.0100
	COD, soluzione standard	50.000 mg/L	± 894 mg/L	1.25035.0100
	Cromo, soluzione standard	0,050 mg/L Cr(VI)	± 0,002 mg/L Cr(VI)	1.33012.0100
	Cromo, soluzione standard	1,00 mg/L Cr(VI)	± 0,03 mg/L Cr(VI)	1.33013.0100
F	Ferro, soluzione standard	0,0500 mg/L Fe	± 0,0015 mg/L Fe	1.33014.0100 1)
	Ferro, soluzione standard	0,1000 mg/L Fe	± 0,0030 mg/L Fe	1.33018.0100 1)
	Ferro, soluzione standard	0,300 mg/L Fe	± 0,009 mg/L Fe	1.33019.0100 1)
	Ferro, soluzione standard	1,00 mg/L Fe	± 0,04 mg/L Fe	1.33020.0100 1)
	Fluoruri, soluzione standard	0,200 mg/L F	± 0,012 mg/L F	1.32234.0100
	Fluoruri, soluzione standard	0,50 mg/L F	± 0,02 mg/L F	1.32233.0100
	Fluoruri, soluzione standard	1,00 mg/L F	± 0,03 mg/L F	1.32235.0100
	Fluoruri, soluzione standard	1,50 mg/L F	± 0,04 mg/L F	1.32236.0100
	Fosforo, soluzione standard	0,400 mg/L PO ₄ -P	± 0,016 mg/L PO ₄ -P	1.25046.0100
	Fosforo, soluzione standard	4,00 mg/L PO ₄ P	± 0,08 mg/L PO ₄ -P	1.25047.0100
	Fosforo, soluzione standard	15,0 mg/L PO ₄ -P	± 0,4 mg/L PO ₄ -P	1.25048.0100

Soluzioni standard (100 mL in $\rm H_2O$), riferibili agli SRM del NIST

	Prodotto	Concentrazione	Incertezza di misura espansa	N° Catalogo
F	Fosforo, soluzione standard	75,0 mg/L PO ₄ -P	± 1,6 mg/L PO ₄ -P	1.25049.0100
M	Manganese, soluzione standard	0,050 mg/L Mn	± 0,004 mg/L Mn	1.32237.0100
	Manganese, soluzione standard	0,200 mg/L Mn	± 0,005 mg/L Mn	1.32238.0100
	Manganese, soluzione standard	1,00 mg/L Mn	± 0,03 mg/L Mn	1.32239.0100
N	Nitrati, soluzione standard	1,00 mg/L NO ₃	\pm 0,03 mg/L NO $_{\scriptscriptstyle 3}$	1.32240.0100
	Nitrati, soluzione standard	10,0 mg/L NO ₃	\pm 0,3 mg/L NO $_{\scriptscriptstyle 3}$	1.32241.0100
	Nitrati, soluzione standard	50,0 mg/L NO ₃	± 2,0 mg/L NO ₃	1.32242.0100
	Nitrati, soluzione standard	0,50 mg/L NO ₃ -N	± 0,05 mg/L NO ₃ -N	1.25036.0100
	Nitrati, soluzione standard	2,50 mg/L NO ₃ -N	\pm 0,06 mg/L NO $_3$ -N	1.25037.0100
	Nitrati, soluzione standard	15,0 mg/L NO ₃ -N	± 0,4 mg/L NO ₃ ·N	1.25038.0100
	Nitrati, soluzione standard	40,0 mg/L NO ₃ -N	± 1 mg/L NO ₃ ·N	1.25039.0100
	Nitrati, soluzione standard	200 mg/L NO ₃ ·N	± 5 mg/L NO ₃ ·N	1.25040.0100
	Nitriti, soluzione standard	0,0100 mg/L NO ₂ -	± 0,0012 mg/L NO ₂ -	1.33021.0100 3)
	Nitriti, soluzione standard	0,200 mg/L NO ₂ -N	± 0,009 mg/L NO ₂ -N	1.25041.0100
	Nitriti, soluzione standard	40,0 mg/L NO ₂ -N	± 1,3 mg/L NO ₂ -N	1.25042.0100
P	Piombo, soluzione standard	0,0500 mg/L Pb	± 0,0040 mg/L Pb	1.33003.0100 1)
	Piombo, soluzione standard	0,100 mg/L Pb	± 0,005 mg/L Pb	1.33004.0100 1)
S	Silicati, soluzione standard	0,1000 mg/L SiO ₂	± 0,0040 mg/L SiO ₂	1.32244.0100
	Silicati, soluzione standard	$0,500 \text{ mg/L SiO}_2$	± 0,025 mg/L SiO ₂	1.32243.0100
	Silicati, soluzione standard	1,000 mg/L SiO ₂	\pm 0,030 mg/L $\mathrm{SiO_2}$	1.32245.0100
	Solfati, soluzione standard	40 mg/L SO ₄	± 6 mg/L SO ₄	1.25050.0100
	Solfati, soluzione standard	125 mg/L SO ₄	\pm 6 mg/L SO $_{\scriptscriptstyle 4}$	1.25051.0100
	Solfati, soluzione standard	400 mg/L SO ₄	± 20 mg/L SO ₄	1.25052.0100
	Solfati, soluzione standard	800 mg/L SO ₄	± 27 mg/L SO ₄	1.25053.0100
T	Tensioattivi (non ionici), soluzione standard 4)	1,00 mg/L Triton® X-100	± 0,16 mg/L Triton® X-100	1.33022.0100
	Tensioattivi (non ionici), soluzione standard 4)	5,00 mg/L Triton® X-100	± 0,30 mg/L Triton® X-100	1.33023.0100
	Tensioattivi (non ionici), soluzione standard 4)	10,00 mg/L Triton® X-100	± 0,60 mg/L Triton® X-100	1.33024.0100
	TOC, soluzione standard	5,00 mg/L TOC	± 0,10 mg/L TOC	1.32246.0100
	TOC, soluzione standard	10,0 mg/L TOC	± 0,2 mg/L TOC	1.32247.0100
	TOC, soluzione standard	25,0 mg/L TOC	± 0,5 mg/L TOC	1.32248.0100
	TOC, soluzione standard	50,0 mg/L TOC	± 1,0 mg/L TOC	1.32249.0100
	TOC, soluzione standard	100 mg/L TOC	± 2 mg/L TOC	1.32251.0100
	TOC, soluzione standard	200 mg/L TOC	± 4 mg/L TOC	1.32252.0100
	TOC, soluzione standard	500 mg/L TOC	± 10 mg/L TOC	1.32253.0100
	1) 100 mL in HNO ₃ 2) Flacone da 250 mL 3) 100 m	nL in NaOH 4) Tracciabile alla USP		

Soluzioni standard Certipur®

Parametri A-Z

Mercurio

Nichel*

Molibdeno

Soluzioni standard Certipur®, concentrazione 1.000 mg/L

1.70226.0100

1.70227.0100

1.09989.0001

Le soluzioni standard Certipur® sono **tracciabili ai materiali di riferimento standard del NIST** e accreditate secondo le linee quida ISO/IEC 17025. Facilmente diluibili in diverse concentrazioni, sono in grado di soddisfare ogni esigenza.

	Parametro	Volume	N° Catalogo		Parametro	Volume	N° Catalogo
A	Alluminio	100 mL	1.19770.0100	N	Nitrati	500 mL	1.19811.0500
	Ammonio	500 mL	1.19812.0500		Nitriti	500 mL	1.19899.0500
	Antimonio	100 mL	1.70204.0100	0	Oro	100 mL	1.70216.0100
	Argento	100 mL	1.19797.0100	P	Palladio	100 mL	1.14282.0100
	Arsenico	100 mL	1.19773.0100		Piombo	100 mL	1.19776.0100
B	Boro	100 mL	1.19500.0100		Platino	100 mL	1.70219.0100
C	Cadmio	100 mL	1.19777.0100		Potassio	100 mL	1.70230.0100
	Calcio	100 mL	1.19778.0100	R	Rame	100 mL	1.19786.0100
	Cianuri	500 mL	1.19533.0500	S	Silicio	100 mL	1.70236.0100
	Cloruri	500 mL	1.19897.0500		Solfati	500 mL	1.19813.0500
	Cobalto	100 mL	1.19785.0100		Stagno	100 mL	1.70242.0100
	Cromati	500 mL	1.19780.0500	T	TOC	100 mL	1.09017.0100
	Cromo	100 mL	1.19779.0100	V	Vanadio	100 mL	1.70245.0100
F	Ferro	100 mL	1.19781.0100	Z	Zinco	100 mL	1.19806.0100
	Fluoruri	500 mL	1.19814.0500		* Titrisol®		
	Fosfati	500 mL	1.19898.0500				(100)
M	Magnesio	100 mL	1.19788.0100				ALC: U
	Manganese	100 mL	1.19789.0100			450	

Procedura per prove valutative interlaboratorio (proficiency test - PT)

1. Registrazione e ordine – Prima di poter effettuare il primo ordine, è necessario procurarsi il codice del laboratorio, registrandosi nel portale dei PT.

100 mL

100 mL

1.000 mL

- **2. Consegna** I laboratori che prendono parte al test ricevono dei campioni "ciechi" come previsto dal programma.
- **3. Studio aperto** Ogni laboratorio analizza i campioni ciechi.
- **4. Presentazione dei dati** I laboratori registrano i risultati nel portale dei PT prima della chiusura dello studio.
- **5. Elaborazione dei dati** Si processano i dati per la stesura dei singoli rapporti di valutazione.
- **6. Rapporti di valutazione** I rapporti vengono inviati attraverso il portale dei PT. Se richiesto, una copia viene spedita anche all'ente di accreditamento.

Prodotti per "proficiency test"

Prodotti per proficiency test accreditati da ACLASS in conformità alla norma ISO/IEC 17043:2010, Certificato N° AP-1469 e riconosciuti dagli organismi di accreditamento di tutto il mondo

	Campi di applicazione	Metalli e inorganici	Molecole organiche	Gas	Caratteristiche fisiche
	Acque potabili				
	Acque reflue				
	Terreni contaminati	•	•		
	Qualità dell'aria ed emissioni		•		
	Microbiologia		•		

Materiali di riferimento certificati per la qualifica di strumenti

CRM Kromega per spettrofotometri UV/Vis

I materiali di riferimento certificati pronti all'uso Kromega sono stati ideati in modo da facilitare la qualifica degli spettrofotometri UV/Vis per la conformità con le GLP.

- Soddisfano i requisiti della Farmacopea Europea per la calibrazione degli spettrofotometri UV/Vis
- Qualifica degli strumenti affidabile e tracciabile con audit trail confermati da una verifica indipendente, in conformità alla Guida ISO 34
- Più semplici, rapidi ed economicamente vantaggiosi delle soluzioni su misura
- Sviluppati per l'impiego in qualunque laboratorio che opera in conformità allo standard ISO 17025
- Spediti in fiale saldate a fiamma e protette in confezioni personalizzate, per prolungarne la durata e evitarne la contaminazione

Per saperne di più sui CRM Kromega: www.sigmaaldrich.com/jaytee

CRM per fotometri

Prodotto	Descrizione	Contenuto	N° Cat.
Standard - Accuratezza fotometrica UV	Per qualificare l'accuratezza fotometrica degli spettrofotometri UV in riferimento ai limiti stabiliti dalla Farm. Eu.	3 fiale (1 bianco, 2 standard). Gli standard sono costituiti da una soluzione di $\rm K_2Cr_2O_7$ in acido perclorico	Z804452
Standard - Risoluzione UV	Per qualificare la risoluzione UV degli spettrofotometri UV in riferimento ai limiti stabiliti dalla Farm. Eu.	2 fiale (1 bianco, 1 standard). Lo standard consiste in una soluzione di toluene in n-esano.	Z804568
Standard - Luce diffusa UV	Per qualificare la luce diffusa degli spettrofotometri UV in riferimento ai limiti stabiliti dalla Farm. Eu.	2 fiale (1 bianco, 1 standard). Lo standard consiste in una soluzione di NaCl in acqua.	Z804665
Kit di qualifica spettrofotometri UV	Per l'impiego in qualunque laboratorio, indipendentemente dall'ente normativo di riferimento, che faccia parte di un'azienda farmaceutica o sia un laboratorio conto terzi che osserva lo standard ISO 17025.	Contiene standard per la qualifica di Accuratezza fotometrica UV Risoluzione Luce diffusa	Z804789

FACCIA CHIAREZZA IN TUTTE LE ACOUE

ouanto è limpida la sua soluzione?

Una soluzione perfetta non presenta alcuna torbidità. Ma in realtà non esiste. Ecco perché la quantificazione della torbidità è essenziale nei proficiency test. Solitamente viene effettuata per valutare l'efficienza delle unità filtranti, per esempio in piscine e spa, o negli impianti di produzione alimentare o delle bevande. È necessaria anche per il controllo dei processo, per esempio per monitorare la coagulazione nel trattamento delle acque reflue.

Noi abbiamo la risposta

I turbidimetri Turbiquant® sono stati ideati per semplificare le analisi della torbidità. Offrono determinazioni rapide e affidabili, in laboratorio o "in situ", e possono essere utilizzati in combinazione con i nostri standard di calibrazione non tossici per risultati chiari e sicuri. Questi strumenti sono disponibili con sorgente di luce a infrarossi (IR) o al tungsteno (T). Scelga il sistema più adatto alle Sue esigenze.

IR: luce infrarossa a 860 nm

- Richiesta in Europa per lo standard ISO 7027 o DIN EN 27027
- Meno soggetta a interferenze nelle soluzioni di colore intenso

T: lampada al tungsteno con spettro di emissione nel bianco visibile

- Richiesta negli USA per Standard Methods 2130 B e USEPA
- Migliore per misurare la torbidità causata da particelle molto piccole

Turbidimetria

Turbiquant®

Informazioni generali	110
Turbiquant® 1100 IR e 1100 T	112
Turbiquant® 1500 T	112
Turbiquant® 3000 IR	113
Standard di calibrazione Turbiquant®	113

Flusso di lavoro per le acque di riscaldamento e raffreddamento > Pagina 20

Flusso di lavoro per le acque reflue

Flusso di lavoro per le acque potabili > Pagina 24

Flusso di lavoro per le acque in bottiglia > Pagina 26

Turbiquant®

Faccia chiarezza in tutte le acque

Cos'è la torbidità?

La torbidità è "la riduzione della trasparenza di un liquido dovuta alla presenza di sostanze in sospensione" (DIN EN 27027). Pertanto, l'acqua limpida presenta valori di torbidità più bassi rispetto all'acqua melmosa contenente particelle sospese come batteri, sedimenti o liquami.

Come viene misurata?

Nella determinazione nefelometrica della torbidità, la luce entrante viene diffusa e misurata a 90 ° con un rivelatore. I segnali sono tipicamente non lineari. Così, campioni caratterizzati da una torbidità molto elevata, come le acque reflue non trattate, mostrano una riduzione del segnale all'aumentare della torbidità. Per maggior sicurezza, questi campioni vengono analizzati in modalità di trasmissione (attenuazione della luce trasmessa a 180°) oltre che mediante nefelometria classica. Il risultato che deriva dalla combinazione dei due metodi è il "rapporto NTU" (NTU ratio).

Risultati chiari con Turbiquant®

I turbidimetri Turbiquant® 3000 sono ideali per le determinazioni più complesse nei campioni molto torbidi o colorati. Le altre serie Turbiquant® offrono altri vantaggi come la mobilità, la robustezza e la conformità con gli standard europei e/o americani (USA). Risultati chiari e affidabili qualunque modello si scelga.

La torbidità è un parametro critico per le acqua potabili, le acque reflue, le bevande e la produzione chimica.

Valori tipici di torbidità:

Acqua deionizzata	0,02 NTU
Acqua potabile	0,02 - 0,5 NTU
Acqua sorgiva	0,05 - 10 NTU
Acque reflue (non trattate)	70 - 2.000 NTU
Acqua filtrata	60 - 800 NTU
(industria della carta)	
USEPA	Livello max. 5 NTU
Giappone	Livello max. 2 NTU
OMS	Livello max. 5 NTU
Francia	Livello max. 4 NTU
Germania	Livello max. 1 NTU

Mobilità

Turbidimetro compatto e portatile per risultati rapidi

Ampia scelta

Sorgente a luce infrarossa o al tungsteno e un'ampia gamma di standard di calibrazione sono in grado di soddisfare qualunque necessità

conformità

Determinazioni conformi agli standard EN ISO 7027 o USEPA 180.1

NTU = Unità nefelometriche di torbidità - Misurazione della luce diffusa a 90° come previsto nella sezione 2130 degli "Standard Methods for the Examination of Water and Wastewater", 21° edizione, 2005.

FNU = Unità nefelometriche di formazina - misurazione della luce diffusa a 90°, applicabile solo se lo strumento è calibrato con standard di formazina. Vi si ricorre per determinazioni conformi allo standard EN ISO 7027 (Conversione: 1 FNU = 1 NTU).

FAU = Unità di attenuazione di formazina - unità di misura della trasmissione per determinazioni conformi allo standard EN ISO 7027 oltre le 40 FNU.

EBC = European Brewery Commission - Misurazione della luce diffusa a 90° usata dalla European Brewery Commission (Conversione: 0,245 EBC = 1 NTU).

Cerca uno strumento per misure di conducibilità o di pH?

Li troverà, insieme a molto altro, nel nostro sito: www.sigmaaldrich.com/labware/ labware-catalog.html

Turbiquant®

Faccia chiarezza in tutte le acque

	Turbiquant® 1100 IR (portatile)	Turbiquant® 1100 T (portatile)	Turbiquant® 1500 T
	Strumento portatile per analisi sul posto	Strumento portatile per analisi sul posto	Strumento standard per tutte le applicazioni di laboratorio, utilizzabile per le acque potabili
N° Catalogo	1.18324.0001	1.18325.0001	1.18331.0001
Principio di misurazione	Nefelometrico – luce diffusa a 90°, conforme a EN ISO 7027	Nefelometrico – luce diffusa a 90° , segue le raccomandazioni USEPA	Nefelometrico non ratio, conforme a EN ISO 7027, segue le raccomandazioni USEPA
Sorgente di luce	i luce LED IR Lampada al tungsteno a luce bianca		Lampada al tungsteno a luce bianca
Indicazioni delle unità	NTU / FNU	NTU / FNU	NTU / FNU
Intervallo di misura	0,02-1.100 NTU	0,02-1.100 NTU	0,02-1.000 NTU
Risoluzione	0,01 nell'intervallo 0,01 < x < 99 0,1 nell'intervallo 100 < x < 999 1 nell'intervallo 1.000 < x < 1.10	,9 NTU	Max. 0,01 nell'intervallo $0 < x < 10$ NTU Max. 0,1 nell'intervallo $10 < x < 100$ NTU Max. 1 nell'intervallo $100 < x < 1.000$ NTU
Accuratezza	±2 % della lettura o ±0,1 NTU n ±3 % della lettura nell'intervallo		± 2 % della lettura o $\pm 0,01$ NTU nell'intervallo 0,00 – 1.000 NTU
Riproducibilità	-	-	< ±1% della lettura o ±0,01 NTU
Calibrazione	Automatica, da 1 a 3 punti	Automatica, da 1 a 3 punti	Automatica, da 1 a 3 punti
Tempo di risposta	14 secondi	14 secondi	< 3 secondi
Cuvette	25 x 45 mm	25 x 45 mm	28 x 70 mm
Volume del campione	15 mL	15 mL	25 mL
Ingresso/ uscita seriale	-	-	RS 232, unidirezionale
Tipo di protezione	Ideato per soddisfare l'IP 67	Ideato per soddisfare l'IP 67	-
Requisiti dell'alimentazione	4 pile alcaline al manganese, AAA / Micro	4 pile alcaline al manganese, AAA / Micro	Alimentatore con spina universale
Certificazioni	CE	CE	CE, UL, CSA, TÜV-GS
Garanzia	2 anni	2 anni	2 anni
Caratteristiche particolari	Strumento portatile, alimentato a batteria	Strumento portatile, alimentato a batteria	Orologio in tempo reale integrato con funzione GLP (monitoraggio degli intervalli di calibrazione), autocontrollo automatico

IR O T? A Lei la scelta

Le misurazioni nell'infrarosso a 860 nm di soluzioni colorate non mostrano interferenze e sono richieste dallo standard EN ISO 7027.

Le lampade al tungsteno (T) che emettono luce bianca sono più sensibili con le piccole particelle; sono richieste dai metodi USEPA 180.1, APHA, AWWA e WPCF.

Turbiquant® 3000 IR

Strumento di precisione per le applicazioni turbidimetriche complesse con soluzioni molto torbide e/o colorate

1.18332.0001

Nefelometrico (modalità "ratio" selezionabile), conforme a EN ISO 7027

LED IR

NTU, FNU, FAU, EBC

0,02-10.000 NTU, 0,02-10.000 FNU, 0,02-10.000 FAU, 0,005-2.450 EBC

Selezionabile 0,1-0,0001 NTU

Max. 0,0001 nell'intervallo 0 < x < 10 NTU

Max. 0,001 nell'intervallo 10 < x < 100 NTU

Max. 0,01 nell'intervallo 100 < x < 1.000 NTU

Max. 0,1 nell'intervallo 1.000 < x < 10.000 NTU

 ± 2 % della lettura o ± 0.01 NTU per l'intervallo 0.00 -1.000 NTU

±5 % della lettura nell'intervallo 1.000 – 4.000 NTU

±10 % della lettura nell'intervallo 4.000 -10.000 NTU

< ± 1 % della lettura o ± 0.01 NTU

Automatica, da 1 a 4 punti (fino a 1.750 NTU); a 10.000 NTU selezionabile $\,$

< 6 secondi

28 x 70 mm

25 mL

RS 232, bidirezionale

-

Alimentatore con spina universale

CE, UL, CSA, TÜV-GS

2 ann

Funzione GLP (monitoraggio degli intervalli di calibrazione), autocontrollo automatico, orologio in tempo reale integrato, codici di sicurezza per l'accesso alla calibrazione e alle impostazioni dello strumento

Standard di calibrazione Turbiquant ^o Precisi, stabili, non tossici, pronti all'uso	
Kit di standard di calibrazione per Turbiquant® 1100 IR/ 1100 T 3 standard 0,02 - 10,0 - 1.000 NTU	1.18335.0001
Kit di standard di calibrazione per Turbiquant® 1500 IR/ 1500 T 3 standard 0,02 - 10,0 - 1.000 NTU	1.18328.0001
Kit di standard di calibrazione per Turbiquant® 3000 IR 4 standard 0,02 - 10,0 - 100,0 - 1.750 NTU	1.18329.0001
Kit di standard di calibrazione per Turbiquant® 3000 T 4 standard 0,02 - 10,0 - 100,0 - 1.750 NTU	1.18349.0001
Standard di calibrazione per Turbiquant® 3000 IR 10.000 NTU	1.18342.0001
Standard di calibrazione per Turbiquant® 3000 T 10.000 NTU	1.18343.0001
Standard di calibrazione per Turbiquant® 1500/ 3000 10 NTU	1.18381.0001

Gli standard di calibrazione Turbiquant® non richiedono particolari precauzioni per la conservazione e il trasporto e vengono forniti con anelli per una rapida e ripetibile indicizzazione, secondo le raccomandazioni USEPA.

Cerchi altri standard per le Sue determinazioni nel capitolo " CRM in matrici ambientali"

come cuvette vuote e lampade, alla pagina:
www.merckmilllipore.com/turbidity

UN PASSO AVANTI NELLE ANALISI

ouanto è fresco il suo miele?

Rapida determinazione dell'idrossimetilfurfurale nel miele

L'applicazione

- La freschezza del miele viene determinata misurandone il contenuto di idrossimetillfurfurale (HMF).
- L'HMF è un composto organico che deriva dalla disidratazione del fruttosio, per es. quando il miele viene riscaldato per facilitare il processo di riempimento.
- L'HMF è a malapena rilevabile nel miele appena centrifugato, ma il suo tenore aumenta alla velocità di 2-3 mg/kg all'anno, a seconda della temperatura e del pH di stoccaggio. A 21 °C, il contenuto di HMF può arrivare a 20 mg/kg in un solo anno.

La nostra soluzione: kit Reflectoquant® per l'idrossimetilfurfurale (HMF)

Il kit Reflectoquant® per l'HMF è il primo test rapido per la determinazione del contenuto di HMF che fornisce risultati quantitativi accurati in pochi minuti dopo la preparazione del campione. Semplice da usare, portatile ed economico, questo kit è ideale per il monitoraggio delle materie prime, ma anche per i processi produttivi e di riempimento.

Vantaggi

- Piccolo e facile da utilizzare per le analisi sul posto
- Calibrazione con codice a barre per risultati quantitativi affidabili in pochi minuti
- Costo delle analisi contenuto

Per maggiori dettagli, visitare la pagina: www.merckmillipore.com/aaf

Riflettometria

Reflectoquant®

Informazioni generali	116
Sono genuine le Sue verdure?	116
RQflex® 10	118
Le Sue bibite dietetiche sono davvero	
senza zucchero?	119
Kit analitici	120

Reflectoquant®

Accuratezza portatile con le strisce reattive

Misurazioni riflettometriche

Con il sistema **Reflectoquant**®, è il laboratorio che raggiunge i campioni. Compatto e facile da usare, questo sistema consente di monitorare le materie prime in ogni fase dei processi produttivi, ottenendo risultati quantitativi precisi, direttamente sul campo.

Comprendendo strisce reattive e riflettometri, questo programma completo offre tutti gli strumenti necessari per analisi di qualità elevata a costi contenuti. Propone, inoltre, numerosi kit con un'estesa gamma di parametri, intervalli di misura e applicazioni, per un ampio spettro di materiali da analizzare.

sono genuine le sue verdure?

Flusso di lavoro per alimenti e bevande > Pagina 30

Semplice determinazione del contenuto di nitrati direttamente in campo

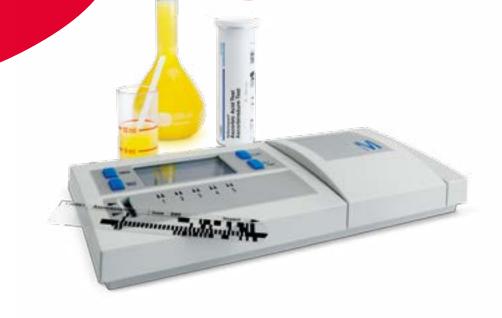
L'applicazione

- Gli esseri umani ingeriscono nitrati prevalentemente attraverso i vegetali (70%), ma anche con l'acqua potabile (20%) e gli insaccati (10%).
- I nitrati di per sé non sono nocivi, ma i prodotti del loro metabolismo possono esserlo.
- L'Organizzazione Mondiale della Sanità raccomanda un limite di 3,65 mg per kg di peso corporeo per il consumo quotidiano di nitrati.

La nostra soluzione: kit Reflectoquant® per i nitrati

Il kit Reflectoquant® per i nitrati è stato ideato per determinazioni rapide e accurate del contenuto di nitrati in una gran varietà di alimenti, come vegetali o alimenti per neonati, e nelle acque potabili. Forniamo anche bollettini applicativi per oltre 15 tipi di campioni da analizzare.

Vantaggi


- Analisi rapide con risultati affidabili
- Dimensioni compatte ideali per analisi sul posto
- Disponibili numerose applicazioni
- · Costi delle analisi contenuti
- · Rispettoso dell'ambiente

racilità di smaltimento

Risultati
affidabili grazie
alla calibrazione
con codice
a barre

risultati rapidi

con accuratezza del ±10-15%

Altre applicazioni Reflectoquant®

Kit per il contenuto di vitamina C negli alimenti

La vitamina C (acido ascorbico) costituisce una caratteristica essenziale di numerosi alimenti. Il suo progressivo impoverimento deve essere monitorato in quanto riflette un deterioramento della qualità e delle proprietà organolettiche degli alimenti.

Scopra le applicazioni del nostro kit Reflectoquant® per acido ascorbico per più di 15 tipi di campione.

www.merckmillipore.com/aaf

Monitoraggio della formazione di acrilammide

Nei cibi fritti o cotti al forno, come le patatine fritte, la reazione tra asparagina e zuccheri riducenti (fruttosio, glucosio, ecc.) può produrre acrilammide, una molecola considerata tossica e cancerogena. Di conseguenza, gli zuccheri riducenti nelle patate non dovrebbero superare alcuni limiti massimi.

Consulti la nostra applicazione "Zuccheri totali nelle patate" per il kit Reflectoquant® degli zuccheri totali.

www.merckmillipore.com/aaf

Reflectoquant®

Accuratezza portatile con le strisce reattive

Riflettometro RQflex® 10

I riflettometri RQflex® 10 sono stati ideati per determinazioni rapide di oltre 30 parametri con le strisce reattive Reflectoquant®. Questi strumenti possono memorizzare fino a cinque metodi differenti e i risultati di 50 misurazioni.

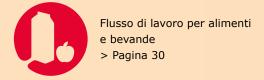
RQflex® 10 N° Cat. 1.16970.0001

Compresi nella fornitura

Contiene adattatore per strisce reattive e kit per ricalibrazione, doppio sistema ottico (per la valutazione di due zone di reazione), memoria per cinque metodi, slot di memoria per 50 risultati (con data, ora, parametro e risultato), funzione di calibrazione lotto-specifica (tecnologia con codice a barre), funzionamento a batteria con 4 batterie da 1,5 V, manuale dettagliato per riflettometro e kit

Accessori per RQflex® | Preparazione dei campioni | Assicurazione della Qualità

Prodotto	Applicazione	N° Catalogo
Adattatore per strisce reattive per RQflex® 10		1.16953.0001
Kit di ricalibrazione per RQflex® 10		1.16954.0001
Kit di controllo RQcheck per RQflex® 10		1.16957.0001
Polivinilpirrolidone Divergan® RS, 100 g	Decolorazione	1.07302.0100
Compresse di sodio azide, 5.000 pz.	Conservazione di campioni di latte	1.06687.0001
Compresse di bicromato di potassio, 5.000 cpr	Conservazione di campioni di latte	1.04858.0001



Le sue bibite dietetiche sono davvero senza zucchero?

Se utilizza la stessa linea produttiva per le bibite dietetiche e per quelle non dietetiche, deve avere la certezza che l'intero sistema produttivo non contenga zucchero.

Noi offriamo una soluzione rapida e semplice da applicare: controlli la Sua linea produttiva con le strisce reattive RQflex® per glucosio e zuccheri totali; otterrà risultati precisi in pochi minuti.

Nº Cat. 1.16720.0001 (glucosio) e 1.16136.0001 (zuccheri totali)

Reflectoquant®

Kit Reflectoquant® | Parametri A-Z

	Parametro	Intervallo di misura	N° di test	N° Catalogo	Metodo	Тіро
A	Acido ascorbico, kit	25 – 450 mg/L acido ascorbico	50	1.16981.0001	Blu fosfomolibdico	
	Acido ascorbico, kit RQeasy®	25 – 450 mg/L acido ascorbico	50	1.17963.0001	Blu fosfomolibdico	
	Acido lattico, kit	3 – 60,0 mg/L acido lattico	50	1.16127.0001	Reazione enzimatica	
	Acido malico, kit	5,0 - 60,0 mg/L acido malico	50	1.16128.0001	Reazione enzimatica	
	Acido peracetico, kit	1,0 – 22,5 mg/L acido peracetico	50	1.16975.0001	Reazione redox	
	Acido peracetico, kit	20,0 – 100 mg/L acido peracetico	50	1.17956.0001	Reazione redox	
	Acido peracetico, kit	75 – 400 mg/L acido peracetico	50	1.16976.0001	Reazione redox	
	Ammonio, kit	0,2 - 7,0 mg/L NH ₄	50	1.16892.0001	Blu indofenolo	Reagente, incl.
	Ammonio, kit	5,0 - 20,0 mg/L NH ₄	50	1.16899.0001	Blu indofenolo	Reagente, incl.
	Ammonio, kit	20 - 180 mg/L NH ₄	50	1.16977.0001	Nessler	Reagente, incl.
C	Calcio, kit	2,5 - 45,0 mg/L Ca	50	1.16993.0001	Gliossale-bis-(2-idrossianile)	Reagente, incl.
	Calcio, kit	5 – 125 mg/L Ca	50	1.16125.0001	Porpora di ftaleina	
	Cloro (libero), kit	0,5 - 10,0 mg/L Cl ₂	50	1.16896.0001	Reazione redox	Reagente, incl.
D	Durezza totale, kit	0,1 - 30,0 °d	50	1.16997.0001	Porpora di ftaleina	
F	Ferro, kit	0,5 - 20,0 mg/L Fe(II)	50	1.16982.0001	Triazina	
-	Ferro, kit	20 - 200 mg/L Fe(II)	50	1.16983.0001	2,2'-bipiridina	
	Formaldeide, kit	1,0 - 45,0 mg/L HCHO	50	1.16989.0001	Triazolo	Reagente, incl.
	Fosfati, kit RQflex® plus	0,1 - 5,0 mg/L PO ₄	100	1.17942.0001	Blu fosfomolibdico	
	Fosfati, kit	5 – 120 mg/L PO ₄	50	1.16978.0001	Blu fosfomolibdico	Reagente, incl.
G	Glucosio, kit	1 - 100 mg/L glucosio	50	1.16720.0001	Reazione enzimatica	
н	Idrossimetilfurfurale, kit	1,0 - 60,0 mg/L HMF	50	1.17952.0001	Reazione enzimatica	
M	Magnesio, kit	5 – 100 mg/L Mg	50	1.16124.0001	Porpora di ftaleina	
N	Nitrati, kit	3 – 90 mg/L NO ₃	50	1.16995.0001	Reazione di Griess modificata	
•	Nitrati, kit	5 – 225 mg/L NO ₃	50	1.16971.0001	Reazione di Griess modificata	
	Nitrati, kit RQeasy®	5 - 250 mg/L NO ₃	50	1.17961.0001	Reazione di Griess modificata	
	Nitriti, kit	0,5 - 25,0 mg/L NO ₂	50	1.16973.0001	Reazione di Griess	
	Nitriti, kit	0,03 - 1,00 g/L NO ₂	50	1.16732.0001	Ammina aromatica	
D	Perossidi, kit	0,2 - 20,0 mg/L H ₂ O ₂	50	1.16974.0001	Reazione enzimatica	
•	Perossidi, kit	20,0 - 100 mg/L H ₂ O ₂	50	1.17968.0001	Reazione enzimatica	
	Perossidi, kit	100 - 1.000 mg/L H ₂ O ₂	50	1.16731.0001	Reazione enzimatica	
	pH, kit	pH 1,0 - 5,0	50	1.16894.0001	Miscela di indicatori	
	pH, kit	pH 4,0 - 9,0	50	1.16996.0001	Miscela di indicatori	
	pH, kit per lubrificanti per refrigerazione	pH 7,0 - 10,0	50	1.16898.0001	Miscela di indicatori	
	Potassio, kit RQflex® plus	1,0 - 25,0 mg/L K	100	1.17945.0001	Kalignost®, turbidimetrico	
	Potassio, kit	0,25 - 1,20 g/L K	50	1.16992.0001	Dipicrilamina	Reagente, incl.
S	Saccarosio, kit	0,25 - 2,5 g/L	50	1.16141.0001	Reazione enzimatica	Reagente, incl.
	Solfiti, kit	10 – 200 mg/L SO ₃	50	1.16987.0001	Nitroprussiato/ Zn-esacianoferrato	
	Strisce di bianco		50	1.16730.0001		
u	Urea, kit per applicazioni lattiero- casearie	0,2 - 7,0 mg/L NH ₄	50	1.16892.0001	Blu indofenolo	Reagente, incl.
Z	Zuccheri totali (glucosio e fruttosio), kit	65 – 650 mg/L zuccheri totali	50	1.16136.0001	Reazione enzimatica	Reagente, incl.

Guardi i nostri filmati e scopra come si utilizzano i nostri riflettometri ed i kit analitici

www.merckmillipore.com/ video_asp_wfa_ascorbic_acid

www.merckmillipore.com/ video_asp_wfa_reflectoquant_ maintenance

Alimenti e bevande Acqua (analisi) Altro Acid Acid	
Acide Ac	
Acide Ac	
Acide Ac	
Acide Ac	
Acide Ac	
Acide Ac	ametro
Acide Ac	o ascorbico, kit
Acide Ac	o ascorbico, kit RQeasy®
Acide Ac	o lattico, kit
Acide Ac	o malico, kit
Acide Ac	o peracetico, kit
Amn Amn Amn Amn Amn Amn Amn Amn	o peracetico, kit
Amn Amn Amn Amn Amn Amn Amn Amn	o peracetico, kit
Amn Amn Calci Amn Calci Color C	nonio, kit
Calci Ca	nonio, kit
Calci	nonio, kit
Clord	io, kit
Dure la	io, kit
Ferro	o, kit
Ferro	ezza totale, kit
	o, kit
	o, kit
	naldeide, kit
Fosfa	ati, kit RQflex® plus
Fosfa	ati, kit
Gluc	cosio, kit
Idros	ssimetilfurfurale, kit
Magi	nesio, kit
Nitra	ati, kit
Nitra	ati, kit
Nitra	ati, kit RQeasy®
Nitrii	ti, kit
Nitrii	ti, kit
Pero	ssidi, kit
Pero ■ ■ Pero	ssidi, kit
Pero ■ Pero	ssidi, kit
pH, I	kit
	kit
	kit per lubrificanti per gerazione
	ssio, kit RQflex® plus
	ssio, kit
	carosio, kit
	ti, kit
	•
Urea case	sce di bianco
Zucc kit	a, kit per applicazioni lattiero-

OBIETTIVO BRILLANTEZZA

La sua acqua è della migliore qualità?

Rilevi le impurezze nell'acqua anche in concentrazioni minime

L'applicazione

- Le acque potabili, freatiche, dolci, minerali e di processo devono essere regolarmente analizzate per diversi parametri.
- L'analisi spesso richiede elevata sensibilità, fino a livelli di ppb.

La nostra soluzione: MColortest™ con scheda per la comparazione del colore

Il sistema MColortest™ è stato ideato per analisi rapide e molto sensibili di campioni di qualunque tipo di acqua. Esso comprende una scheda per la comparazione del colore che consente un'accurata valutazione del campione grazie al confronto del suo colore di reazione con una scala cromatica di elevata qualità.

Vantaggi

- Brillantezza senza pari e fine gradazione del colore per analisi precise
- Test a lettura visiva semplici da usare e risultati rapidi
- Possibilità di analizzare concentrazioni da molto basse (ordine dei ppb) a intermedie
- Sensibilità eccellente

Per maggiori dettagli, visitare la pagina: www.merckmillipore.com/aaf

Kit per analisi colorimetriche

MColortest™

Informazioni generali	124
Il contenuto di ammonio dell'acqua	
è sicuro per la vita acquatica?	125
Kit rapidi a lettura visiva	126
Elenco dei prodotti	128
Laboratorio compatto	137

Flusso di lavoro per le acque di riscaldamento e raffreddamento > Pagina 20

Flusso di lavoro per le acque potabili > Pagina 24

Flusso di lavoro per le acque in bottiglia > Pagina 26

MColortest™

Obiettivo brillantezza con le schede cromatiche

Kit per analisi colorimetriche e titrimetriche

I kit MColortest™ consentono di ottenere risultati eccezionali grazie a schede cromatiche brillanti per confronti semplici e precisi. Non richiedono una specifica formazione; è sufficiente seguire le istruzioni illustrate. Nonostante la loro semplicità, offrono un'affidabilità senza eguali. Tutti i kit analitici vengono scrupolosamente controllati con soluzioni standard certificate, tracciabili per risalire direttamente ai materiali di riferimento primari di NIST e PTB. Grazie alla loro eccellente stabilità, questi kit possono essere conservati per tre anni a 15-25 °C.

convenienti confezioni ricarica

semplice, rapida, diretta

lettura delle schede cromatiche

massima affidabilità

con numerosi parametri

Il contenuto di ammonio dell'acqua è sicuro per la vita acquatica?

Sensibile determinazione dell'ammonio nelle acque dolci e di mare

L'applicazione

- L'ammonio è un comune inquinante delle acque e può essere tossico per la vita degli ambienti acquatici.
- La determinazione della concentrazione dell'ammonio nell'acqua è richiesta da numerose autorità internazional e i limiti massimi stabiliti non devono essere oltrepassati.

La nostra soluzione: kit MColortest™ per l'ammonio

Offriamo kit specifici per determinazioni rapide e affidabili degli ioni ammonio e dell'ammonio non ionizzato in acque dolci e di mare. Questi kit sono stati ideati per l'impiego con il sistema $MColortest^{TM}$, permettendo misurazioni sensibili nell'intervallo da 0,5 a 10 mg/L NH_a .

Vantaggi

- Facilità d'uso garantita grazie alle istruzioni illustrate
- Scheda cromatica inclusa nel kit per una comparazione precisa
- Tempi di reazione rapidi con risultati in 10 minuti
- Disponibili indicazioni per lo smaltimento dei rifiuti

Per altre applicazioni, visiti: www.merckmillipore.com/aaf

MColortest™

La differenza nei sistemi analitici

Concentrazioni da intermedie a elevate, specialmente con soluzioni torbide MColortest™ con disco-comparatore del colore

Questi kit misurano la reazione cromatica usando il metodo della luce trasmessa. Pertanto, anche campioni di acque torbide e leggermente colorate possono essere analizzati senza un'ulteriore preparazione del campione.

Il disco, con dieci gradi di colore, è composto da una speciale plastica fotoresistente, estremamente durevole ed è pertanto utilizzabile anche in aree industriali ed in ambienti umidi. Quasi tutti i recipienti dei kit sono infrangibili e quindi sicuri da maneggiare.

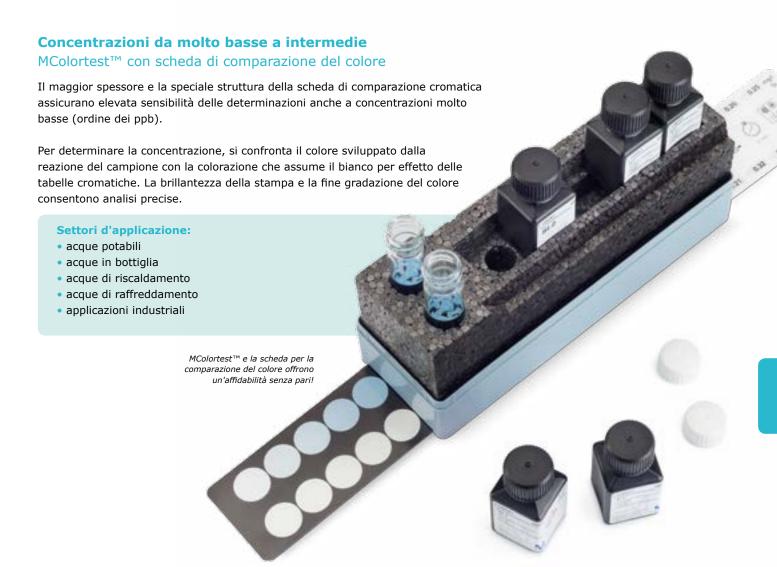
Settori d'applicazione:

- acque reflue
- acque industriali
- acque freatiche
- acque in bottiglia
- · acque di riscaldamento
- acque delle piscine
- applicazioni industriali

Il sistema MColortest™: tutti i reagenti e il disco per la comparazione cromatica sono inclusi nel kit.

Concentrazioni intermedie

Metodi colorimetrici e titrimetrici MColortest™


Analisi titrimetriche: si procede alla titolazione del campione fino al viraggio del colore. La concentrazione del parametro in esame viene determinata sulla base del numero di gocce consumate fino al punto di viraggio o del valore letto sulla scala graduata di una pipetta.

Analisi colorimetriche: si aggiungono i reagenti al campione, provocando una reazione cromatica. La concentrazione viene determinata confrontando il colore ottenuto con una

Settori d'applicazione:

- acquacoltura in acque dolci e di mare
- acque di superficie
- acqua delle piscine
- lezioni scolastiche

convenienti confezioni ricarica

Per molti dei nostri kit analitici offriamo convenienti confezioni ricarica che Le consentiranno di ridurre i costi per analisi in modo efficace.

consigli per lo smaltimento dei rifiuti

Troverà informazioni dettagliate sullo smaltimento dei kit MColortest™ alla pagina: www.disposal-test-kits.com

Kit rapidi a lettura visiva | Parametri A-C

	Parametro	Scala graduata	N° di test	N° Cat.	N° Cat. ricarica	Metodo	Tipo
A	Alcalinità, kit	0,1 mmoli/L	200 a 8,5 mmoli/L	1.11109.0001		Acidimetrico	Titolazione con pipetta
	Alluminio, kit	0,07-0,12-0,20-0,35- 0,50- 0,65-0,80 mg/L Al	185	1.14413.0001	1.18452.0002	Cromazurolo S	Scheda cromatica
	Alluminio, kit	0,10-0,20-0,35-0,50-0,75- 1-2-3-6 mg/L Al	150	1.18386.0001	1.18452.0002	Cromazurolo S	Disco cromatico
	Ammonio, kit	0,025-0,050-0,075-0,10-0,15- 0,20-0,25-0,30-0,40 mg/L NH ₄	70	1.14428.0002		Blu indofenolo	Scheda cromatica
	Ammonio, kit	0,05-0,10-0,15-0,2-0,3- 0,4-0,5-0,6-0,8 mg/L NH ₄	100	1.14400.0001		Neßler	Scheda cromatica
	Ammonio, kit	0,2-0,4-0,6-1-2-3-5 mg/L NH ₄	50	1.08024.0001		Blu indofenolo	Comparatore scorrevole
	Ammonio, kit	0,2-0,5-0,8-1,2-1,6-2-3-5- 8 mg/L NH ₄	200	1.14423.0002	1.18455.0002	Blu indofenolo	Scheda cromatica
	Ammonio, kit	0,2-0,5-0,8-1,3-2,0-3,0- 4,5-6,0-8,0 mg/L NH ₄	200	1.14750.0002	1.18455.0002	Blu indofenolo	Disco cromatico
	Ammonio, kit	0,5-1-3-5-10 mg/L NH ₄	150	1.11117.0001		Neßler	Scheda cromatica
	Ammonio, kit per acque $0,5-1-3-5-10 \text{ mg/L NH}_4$ dolci e di mare		50	1.14657.0001		Blu indofenolo	Scheda cromatica
	Anidride carbonica, kit	1,25 mg/L CO ₂ 2,5 mg/L CO ₂ 5 mg/L CO ₂	100 a 30 mg/L 100 a 60 mg/L 100 a 120 mg/L	1.17179.0001		Fenolftaleina	Titolazione con contagocce
В	Biossido di cloro, kit	iossido di cloro, kit 0,020–0,050–0,075–0,10–0,15– 0,20–0,30–0,40–0,55 mg/L ClO_2		1.18754.0001	1.18757.0002	DPD	Scheda cromatica
	Biossido di cloro, kit	0,5-0,9-1,4-1,9-3,8-7,5-13- 19-28 mg/L CIO ₂	300	1.18756.0001	1.18757.0002	DPD	Disco cromatico
C	Calcio, kit	2 mg/L Ca	200 a 170 mg/L Ca	1.11110.0001		Titriplex® III	Titolazione con pipetta
	Cianuri, kit	0,002-0,004-0,007-0,010-0,013- 0,016-0,020-0,025-0,030 mg/L CN		1.14417.0001	1.18457.0002	Reazione di König	Scheda cromatica
	Cianuri, kit	0,03-0,06-0,10-0,15-0,2- 0,3-0,4-0,5-0,7 mg/L CN	200	1.14429.0001	1.18457.0002	Reazione di König	Scheda cromatica
	Cianuri, kit	0,03-0,07-0,13-0,2-0,3-0,5- 1-2-5 mg/L CN	200	1.14798.0001	1.18457.0002	Reazione di König	Disco cromatico
	Cloro (cloro libero), kit	0,01-0,025-0,045-0,06-0,08- 0,1-0,15-0,2-0,3 mg/L Cl ₂	400 cloro libero	1.14434.0001	1.14977.0002	DPD	Scheda cromatica
	Cloro (cloro libero), kit per acque dolci e di mare	0,10-0,25-0,5-1,0-2,0 mg/L Cl ₂	100 cloro libero	1.14670.0001		ТМВ	Scheda cromatica
	Cloro (cloro libero), kit	0,1-0,2-0,3-0,4-0,6-0,8- 1,0-1,5-2,0 mg/L Cl ₂	600 cloro libero	1.14978.0001	1.14979.0002	DPD liquida	Disco cromatico
	Cloro (cloro libero e totale), kit	0,1-0,2-0,3-0,4-0,6-0,8- 1,0-1,5-2,0 mg/L Cl ₂	400 cloro libero + 400 cloro totale	1.14801.0001	1.14803.0002	DPD liquida	Disco cromatico
	Cloro (cloro libero), kit	0,25-0,50-0,75-1-2-4-8- 10-15 mg/L Cl ₂	1.000 cloro libero	1.14976.0001	1.14977.0002	DPD	Disco cromatico
	Cloro (cloro libero e totale), kit	0,25-0,50-0,75-1-2-4-7- 10-15 mg/L Cl ₂	400 cloro libero + 400 cloro totale	1.14826.0001	1.18326.0002	DPD	Disco cromatico
	Cloro (cloro libero) e pH, kit	0,10-0,20-0,30-0,60-1,0-1,5 mg/L Cl ₂ / pH 6,5-6,8-7,0-7,2-7,4-7,6-7,9	150 (cloro) 150 (pH)	1.11160.0001		DPD Rosso fenolo	Comparatore scorrevole

ن د	Je della	egli aline			illerali	•	esco ;	"riscalda,	tabili.	Seriche,	ileiustria!!	Drocesso.	Mare		on Line	\$0	Salvano.	e de la companya de l
A Oduzio	Alin	Succhi elime	e beva	nde	Bibite	4cquaco.	4 CA We	Acque De mento	Acqu	a (and a	Ague disi)	Acque di	Piscine	Acque,	Agricolt	orio Altri	Salvano.	Parametro
						•												Alcalinità, kit
				•			•	•	•					•				Alluminio, kit
•						•	•	•	•	•	•	•	•	•			•	Alluminio, kit
				•			•	•	•					•	•			Ammonio, kit
						•	•	•	•				•	•	•			Ammonio, kit
	•			•			•	•	•					•	•			Ammonio, kit
	•			•		•	•	•	•		•		•	•	•		•	Ammonio, kit
	•			•			•	•	•		•			•	•			Ammonio, kit
						•	•	•	•	•	•	•	•	•				Ammonio, kit
								•	•			•			•			Ammonio, kit per acque dolci e di mare
							•	•	•	•		•		•				Anidride carbonica, kit
							•	•								•		Biossido di cloro, kit
							•	•			•			•		•		Biossido di cloro, kit
				•			•	•	•					•				Calcio, kit
	•			•		•		•	•	•				•			•	Cianuri, kit
				•				•	•	•				•				Cianuri, kit
								•	•					•				Cianuri, kit
				•				•						•		•		Cloro (cloro libero), kit
						•		•	•			•		•				Cloro (cloro libero), kit per acque dolci e di mare
				•				•	•					•		•		Cloro (cloro libero), kit
						•		•	•				•	•		•		Cloro (cloro libero e totale), kit
				•				•	•					•				Cloro (cloro libero), kit
								•					•	•		•		Cloro (cloro libero e totale), kit
													•					Cloro (cloro libero) e pH, kit

Kit rapidi a lettura visiva | Parametri C-F

	Parametro	Scala graduata	N° di test	N° Cat.	N° Cat. ricarica	Metodo	Tipo
C	Cloro (cloro libero e totale) e pH, kit	0,1-0,3-0,6-1,0-1,5 mg/L Cl ₂ pH 6,8-7,1-7,4-7,6-7,8	200 (cloro) 200 (pH)	1.11174.0001	1.11157.0001 1.11143.0001	DPD Rosso fenolo	Recipiente di comparazione
	Cloruri, kit	2 mg/L Cl	200 aa 170 mg/L Cl	1.11106.0001		Nitrato di mercu- rio(II)	Titolazione con pipetta
	Cloruri, kit	3-6-10-18-30-60-100-180- 300 mg/L Cl	200	1.14753.0001	1.18322.0002	Tiocianato di mercurio(II)	Disco cromatico
	Cloruri, kit	5-10-20-40-75-150-300 mg/L Cl	400	1.14401.0001	1.18322.0002	Tiocianato di mercurio(II)	Scheda cromatica
	Cloruri, kit	25 mg/L Cl	100 a 150 mg/L Cl	1.11132.0001		Nitrato di mercu- rio(II)	Titolazione con contagocce
	Colore, kit	5-10-20-30-40-50-70-100- 150 CU (Hazen)	Illimitati	1.14421.0001		Hazen	Scheda cromatica
	Cromati, kit	$0.011-0.022-0.045-0.07-0.09-\\0.11-0.13-0.18-0.22\ \text{mg/L CrO}_4$	150	1.14402.0001	1.18456.0002	Difenilcarbazide	Scheda cromatica
	Cromati, kit	0,22-0,45-0,67-1,0-1,3-1,8- 2,2-2,9-3,6 mg/L CrO ₄	300	1.14441.0001	1.18456.0002	Difenilcarbazide	Scheda cromatica
	Cromati, kit	0,22-0,45-0,8-1,3-2,2-4,0- 6,7-13-22 mg/L CrO ₄	300	1.14756.0001	1.18456.0002	Difenilcarbazide	Disco cromatico
D	Durezza carbonatica/ Capacità acida fino a pH 4,3 (ANC), kit	0,25 °e e 0,1 mmoli/l	300 a 12,5 °e	1.08048.0001		Acidimetrico	Titolazione con pipetta
	Durezza carbonatica/ Capacità acida fino a pH 4,3 (ANC), kit	1,25 °e	100 a 12,5 °e	1.11103.0001		Acidimetrico	Titolazione con contagocce
	Durezza carbonatica, kit per acque dolci e acque di mare	1,25 °e	50 a 1,25 °e	1.14653.0001		Acidimetrico	Titolazione con contagocce
	Durezza residua, kit	0,05-0,10-0,19 °e	400	1.11142.0001		Miscela di indicatori	Scheda cromatica
	Durezza totale, kit	0,13 °e e 1 mg/L CaCO ₃	300 a 3,8 °e	1.08047.0001	1.08040.0001	Titriplex® III	Titolazione con pipetta
	Durezza totale, kit	0,25 °e e 10 mg/L CaCO ₃	300 a 12,5 °e	1.08039.0001	1.08033.0001 1.11122.0001 1.08203.0001	Titriplex® III	Titolazione con pipetta
	Durezza totale, kit	1,25 °e	100 a 12,5 °e	1.11104.0001		Titriplex® III	Titolazione con contagocce
	Durezza totale, kit	20 mg/L CaCO ₃	200 a 200 mg/L	1.08312.0001		Titriplex® III	Titolazione con contagocce
	Durezza totale, kit per acque dolci	1,25 °e	50 a 1,25 °e	1.14652.0001		Titriplex® III	Titolazione con contagocce
F	Ferro, kit	0,01-0,02-0,03-0,04-0,06- 0,08-0,10-0,15-0,20 mg/L Fe	300	1.14403.0001	1.18458.0002	Triazina	Scheda cromatica
	Ferro, kit per acque dolci e di mare	0,05-0,1-0,2-0,4-0,6-0,8- 1,0 mg/L Fe	50	1.14660.0001		Triazina	Scheda cromatica
	Ferro, kit	0,1-0,2-0,5-0,8-1,2-2-3-5 mg/L Fe	500	1.14759.0001	1.18458.0002	Triazina	Disco cromatico
	Ferro, kit	0,1-0,3-0,5-1,0-2,5-5,0- 7,5-12,5-25-50 mg/L Fe	200	1.11136.0001	1.08023.0001	2,2'-bipiridina	Recipiente di comparazione
	Ferro, kit	0,2-0,4-0,6-0,8-1,0-1,3- 1,6-2,0-2,5 mg/L Fe	500	1.14438.0001	1.18458.0002	Triazina	Scheda cromatica

A COOLINE	ne della	Succhi	o beva	Attier	!hereu!!	A Guago.	Carrie	Acque nento	iliqe ₁₀	Acque i	Acque a.	Acque C	mare	Acque,	onuo,		Calvano"	S. Harris C.
Q.t. but	Alin	nenti e	aroo beva	nde	Bibite	Acqua	Acque	Acque en	Acqu	ia (an	alisi)	Acque	Piscine Piscine	4cque	Agrico.	ر مرزنگر Altri	Company	Parametro
													•					Cloro (cloro libero e totale) e pH, kit
	•			•					•	•	•							Cloruri, kit
				•			•	•	•	•	•		•	•				Cloruri, kit
	•			•					•		•				•			Cloruri, kit
	•			•		•	•	•	•	•	•	•	•	•	-			Cloruri, kit
•		•							•		•							Colore, kit
								•	•			•		•			•	Cromati, kit
									•	•								Cromati, kit
								•	•	•		•		•			•	Cromati, kit
				•		•	•	•	•	•	•	•						Durezza carbonatica/ Capacità acida fino a pH 4,3 (ANC), kit
				•		•	•	•	•	•	•	•						Durezza carbonatica/ Capacità acida fino a pH 4,3 (ANC), kit
				•					•	•	•							Durezza carbonatica, kit per acque dolci e acque di mare
																		Durezza residua, kit
				•					•									Durezza totale, kit
				•		•	•	•	•			•	•					Durezza totale, kit
				•					•									Durezza totale, kit
				•		•	•	•	•	•		•	•					Durezza totale, kit
									•	•				•				Durezza totale, kit per acque dolci
	•			•		•	•	•	•	•		•		•				Ferro, kit
				•			•		•			•		•				Ferro, kit per acque dolci e di mare
				•		•	•	•	•	•				•				Ferro, kit
	•			•		•	•		•	•								Ferro, kit
	•					•	•	•	•	•				•				Ferro, kit

Kit rapidi a lettura visiva | Parametri F-N

	Parametro	Scala graduata	N° di test	N° Cat.	N° Cat. ricarica	Metodo	Tipo
F	Ferro, kit	0,25-0,5-1,0-2,0-3,0-5,0- 7,5-10-15 mg/L Fe	300	1.14404.0001		1,10-fenantrolina	Scheda cromatica
	Fluoruri, kit	0,15-0,3-0,5-0,8 mg/L F	100	1.18771.0001		Porpora di ftaleina	Scheda cromatica
	Formaldeide, kit	0,10-0,25-0,4-0,6-0,8-1,0- 1,5 mg/L HCHO	100	1.08028.0001		Derivato del triazolo	Comparatore scorrevole
	Fosfati, kit	0,046-0,092-0,14-0,18-0,25- 0,34-0,43 mg/L PO ₄	200	1.18394.0001	1.18465.0002	Blu di fosfomolibdeno	Scheda cromatica
	Fosfati, kit per acque dolci e acque di mare	0,25-0,50-0,75-1,0-1,5-2,0- 3,0 mg/L PO ₄	100	1.14661.0001		Blu di fosfomolibdeno	Scheda cromatica
	Fosfati, kit	0,6-1,2-1,8-2,5-3,1-4,6- 6,1-7,7-9,2 mg/L PO ₄	200	1.14846.0001	1.18465.0002	Blu di fosfomolibdeno	Disco cromatico
	Fosfati, kit	1,3-3,3-6,7-10-13 mg/L PO ₄	200	1.11138.0001	1.08046.0001	Blu di fosfomolibdeno	Recipiente di comparazione
	Fosfati, kit	3,1-6,1-11-18-31-61-123 mg/L PO ₄	190	1.14449.0001	1.18466.0002	Molibdato di vanadio	Scheda cromatica
	Fosfati, kit	4,6-9,2-18-28-37-49-61- 123-307 mg/L PO ₄	300	1.18388.0001	1.18466.0002	Molibdato di vanadio	Disco cromatico
I	Idrazina, kit	0,10-0,25-0,5-1,0 mg/L N ₂ H ₂	100	1.08017.0001	Necessario 1.08018.0001	Dimetilammino- benzaldeide	Recipiente di comparazione
	Indicatore universale del pH, liquido	pH 4,0-4,5-5,0-5,5-6,0-6,5- 7,0-7,5-8,0-8,5-9,0-9,5-10,0	100 mL	1.09175.0100		Miscela di indicatori	Scheda cromatica
	Indicatore universale del pH, liquido	pH 4,0-4,5-5,0-5,5-6,0-6,5- 7,0-7,5-8,0-8,5-9,0-9,5-10,0	1 L	1.09175.1000		Miscela di indicatori	Scheda cromatica
	Indicatore del pH, liquido	pH 9,0-10,0-11,0-12,0-13,0	100 mL	1.09176.0100		Miscela di indicatori	Scheda cromatica
M	Magnesio, kit	100-200-300-500-1.000- 1.500 mg/L Mg	50	1.11131.0001		Blu di xilidile	Scheda cromatica
	Manganese, kit	0,03-0,06-0,10-0,15-0,20- 0,25-0,3-0,4-0,5 mg/L Mn	120	1.14406.0001	1.18460.0002	Ossima	Scheda cromatica
	Manganese, kit	0,3-0,7-1,3-2-3-4- 5-7-10 mg/L Mn	120	1.14768.0001	1.18460.0002	Ossima	Disco cromatico
N	Nichel, kit	0,02-0,04-0,07-0,10-0,15- 0,2-0,3-0,4-0,5 mg/L Ni	125	1.14420.0001	1.18461.0002	Dimetilgliossima	Scheda cromatica
	Nichel, kit	0,5-1,0-1,5-2-3-4-6- 8-10 mg/L Ni	500	1.14783.0001	1.18461.0002	Dimetilgliossima	Disco cromatico
	Nitrati, kit	5-10-20-30-40-50-60-70- 90 mg/L NO ₃	90	1.18387.0001	1.18462.0002	Nitrospettrale / acido solforico	Disco cromatico
	Nitrati, kit	10-25-50-75-100-125-150 mg/L NO ₃	200	1.11170.0001		Acido solfanilico	Comparatore scorrevole
	Nitrati, kit per acque dolci	10-25-50-75-100-125-150 mg/L NO ₃	100	1.11169.0001		Acido solfanilico	Scheda cromatica
	Nitriti, kit	0,005-0,012-0,02-0,03-0,04- 0,05-0,06-0,08-0,10 mg/L NO ₂	110	1.14408.0001	1.18463.0002	Reazione di Griess	Scheda cromatica
	Nitriti, kit per acque dolci e di mare	0,05-0,15-0,25-0,50-1,0 mg/L NO ₂	100	1.14658.0001		Reazione di Griess	Scheda cromatica
	Nitriti, kit	0,025-0,05-0,075-0,1-0,15- 0,2-0,3-0,5 mg/L NO ₂	200	1.08025.0001		Reazione di Griess	Comparatore scorrevole

	. N.	, ×	S		<i>&</i>	E C		6	80 S.	19	SELC.	is a second	S	are		8	_		Ž
	Or Any	Analisi de la bir	Succhi	o do orki		Bibite Therall	Acquaco.	A 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acque mento ame	A	Acque in a so	Acque di	Acque ci	Piscine	Acque Co	Agricol.	Course Course	Gelvanor.	
	•	Alin	nenti e	beva	nde	~	· ·	1 20	· ·	Acqu	ıa (ana	alisi)	· ·		· ·	V	Altri		Parametro
																			Ferro, kit
					•				•	•									Fluoruri, kit
		•										•					•	•	Formaldeide, kit
		•											•			•			Fosfati, kit
							•	•	•	•	•	•	•		•				Fosfati, kit per acque dolci e acque di mare
		•			•		•						•			•			Fosfati, kit
		•			•			•	•	•	•	•	•		•	•		•	Fosfati, kit
					•		•	•	•	•		•	•			•		•	Fosfati, kit
					•			•	•	•	•	•	•		•	•		•	Fosfati, kit
								•											Idrazina, kit
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	Indicatore universale del pH, liquido
1	•	•	•	•	•		•	•	•	•		•	•	•		•	•	•	Indicatore universale del pH, liquido
															•			•	Indicatore del pH, liquido
									•	•									Magnesio, kit
					•			•	•	•			•		•	•		•	Manganese, kit
					•			•					•			•		•	Manganese, kit
															•			•	Nichel, kit
									•	•	•								Nichel, kit
	•	•								•	•				•	•			Nitrati, kit
		•					•		•	•				•	•	•			Nitrati, kit
		•					•		•					•	•				Nitrati, kit per acque dolci
		•			•		•	•	•	•			•		•	•		•	Nitriti, kit
					•		•	•	•	•	•		•		•				Nitriti, kit per acque dolci e di mare
		•			•		•	•					•			•			Nitriti, kit

Kit rapidi a lettura visiva | Parametri N-Z

	Parametro	Scala graduata	N° di test	N° Cat.	N° Cat. ricarica	Metodo	Tipo
N	Nitriti, kit	0,1-0,2-0,3-0,4-0,6-0,8- 1,0-1,3-2,0 mg/L NO ₂	400	1.14424.0001	1.18463.0002	Reazione di Griess	Scheda cromatica
	Nitriti, kit	0,1-0,2-0,4-0,6-1,0-1,8- 3,0-6,0-10 mg/L NO ₂	400	1.14774.0001	1.18463.0002	Reazione di Griess	Disco cromatico
0	Ossigeno, kit	0,1 mg/L O ₂	100 a 8,5 mg/L O ₂	1.11107.0001	1.11152.0001 1.14663.0001		Titolazione con pipetta
	Ossigeno, kit per acque dolci e di mare	1-3-5-7-9-12 mg/L O ₂	50	1.14662.0001	Necessario: 1.14663.0001	Metodo Winkler modificato	Scheda cromatica
	Ozono, kit	0,007-0,017-0,030-0,040-0,055- 0,070-0,10-0,14-0,20 mg/L O ₃	300	1.18755.0001	1.18759.0002	DPD	Scheda cromatica
	Ozono, kit	0,15-0,35-0,5-0,7-1,4-2,7- 5,0-7,0-10 mg/L O ₃	300	1.18758.0001	1.18759.0002	DPD	Disco cromatico
P	pH, kit	pH 4,5-5,0-5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0	400	1.08027.0001		Miscela di indicatori	Comparatore scorrevole
	pH, kit	pH 4,5-5,0-5,5-6,0-6,5-7,0- 7,5-8,0-8,5-9,0	100	1.08038.0001	1.08043.0001	Miscela di indicatori	Recipiente di comparazione
	pH, kit per acque dolci e di mare	pH 5,0-5,3-5,6-6,0-6,3-6,6-7,0-7,3-7,6-8,0-8,3-8,6-9,0	200	1.18773.0001		Miscela di indicatori /dolci/ di mare)	Scheda cromatica
	pH, kit per piscine	pH 6,5-6,8-7,1-7,4-7,6-7,8-8,2	200	1.14669.0001		Rosso fenolo	Scheda cromatica
R	Rame, kit	0,05-0,08-0,12-0,16-0,2- 0,25-0,3-0,4-0,5 mg/L Cu	125	1.14414.0001	1.18459.0002	Cuprizone	Scheda cromatica
	Rame, kit	0,3-0,6-1,0-1,5-2,0-2,5-3-5 mg/L Cu	125	1.14418.0001	1.18459.0002	Cuprizone	Scheda cromatica
	Rame, kit	0,3-0,6-1,0-1,5-2-3-5-7-10 mg/L Cu	125	1.14765.0001	1.18459.0002	Cuprizone	Disco cromatico
	Rame, kit per acque dolci e acque di mare	0,15-0,3-0,45-0,6-0,8-1,2- 1,6 mg/L Cu	50	1.14651.0001		Cuprizone	Scheda cromatica
S	Silicati (acido silicico), kit	$\begin{array}{c} \text{0,021-0,043-0,086-0,13-0,17-} \\ \text{0,21-0,32-0,43-0,53 mg/L SiO}_2 \end{array}$	150	1.14410.0001	1.18323.0002	Blu di silicomolibdeno	Scheda cromatica
	Silicati (acido silicico), kit	0,64-1,3-2,1-3,2-4,3-6,4- 11-15-21 mg/L SiO ₂	150	1.14792.0001	1.18323.0002	Blu di silicomolibdeno	Disco cromatico
	Solfati, kit	25-50-75-100-130-160- 190-240-300 mg/L SO ₄	75	1.18389.0001	1.18467.0002	Acido tannico	Disco cromatico
	Solfati, kit	255080110140200300 $\mathrm{mg/L~SO_4}$	90	1.14411.0001	1.18467.0002	Acido tannico	Scheda cromatica
	Solfiti, kit	$0.5 \text{ mg/L Na}_2\text{SO}_3 (0.32 \text{ mg/L SO}_3)$	200 a 40 mg/L Na ₂ SO ₃	1.11148.0001		Iodato/ amido	Titolazione con pipetta
	Solfuri, kit	0,02-0,04-0,06-0,08-0,10- 0,13-0,16-0,20-0,25 mg/L S	100	1.14416.0001	1.18468.0002	Dimetil-p- fenilendiammina	Scheda cromatica
	Solfuri, kit	0,1-0,3-0,5-0,7-1-2-3-4-5 mg/L S	200	1.14777.0001	1.18468.0002	Dimetil-p- fenilendiammina	Disco cromatico
u	Urea, kit per piscine	$0,3-0,6-1,0-1,5-2-3-4-5-8$ mg/L $(NH_2)_2CO$	100	1.14843.0001	1.14845.0002	Blu indofenolo	Disco cromatico
Z	Zinco, kit	0,1-0,2-0,3-0,4-0,5-0,7-1- 2-5 mg/L Zn	120	1.14780.0001	1.14782.0002	Tiocianato/ Verde brillante	Disco cromatico
	Zinco, kit	0,1-0,2-0,3-0,4-0,5-0,7-1- 2-5 mg/L Zn	120	1.14412.0001	1.14782.0002	Tiocianato/ Verde brillante	Scheda cromatica

A COURT	one della b.	Succhi eline	o beva	lattiero co	Heralli	å	Ring.	Acque mento	otabili.	Acque Teatiche, a	Acque di	Processo	Mare	£.	en de	£0 3	Salvano or della disi	e e e e e e e e e e e e e e e e e e e
Ar you	Alin	nenti e	ąło de beva	nde	Bibite	Acquaco	Acque large	A COUR	Acqua	a (ana	litica)	Acque.	Piscine	4cque	Agrico,	ر روټن ^و Altri	Calkan	Parametro
						•		•	•									Nitriti, kit
	•					•	•	•	•					•	•		•	Nitriti, kit
•						•		•	•									Ossigeno, kit
						•		•	•			•		•				Ossigeno, kit per acque dolci e di mare
								•								•		Ozono, kit
								•			•		•	•		•		Ozono, kit
•	•	•		•		•		•	•			•	•		•	•		pH, kit
						•	•	•	•	•								pH, kit
						•		•	•			•						pH, kit per acque dolci e di mare
													•					pH, kit per piscine
•	•	•						•	•			•	•					Rame, kit
	•						•	•	•			•	•	•			•	Rame, kit
	•							•	•			•	•					Rame, kit
						•	•	•	•			•	•	•				Rame, kit per acque dolci e acque di mare
				•			•	•	•	•		•						Silicati (acido silicico), kit
				•			•	•	•			•		•				Silicati (acido silicico), kit
				•				•	•									Solfati, kit
								•	•					•				Solfati, kit
•	•	•	•	•			•	•	•					•				Solfiti, kit
				•		•		•	•					•	•			Solfuri, kit
				•		•		•	•					•	•			Solfuri, kit
												•	•					Urea, kit
•		•		•	•		•	•	•	•				•			•	Zinco, kit
•		•			•		•	•	•	•				•				Zinco, kit

MColortest™

Kit rapidi a lettura visiva e accessori

È ora di cambiare l'olio?

Offriamo metodi colorimetrici rapidi per determinare la freschezza di oli e grassi per frittura. Con i nostri kit di semplice impiego, saprà sempre se il Suo olio è ancora buono o se è ora di sostituirlo.

Kit per grassi per frittura ad immersione

Parametro	Scala graduata	N° di test	N° Cat.	N° Cat. ricarica	Metodo
Acidi grassi liberi	0,5-1,0-2,0-3,0 mg/g KOH	100	1.17046.0001		Indicatore del pH
Oxifrit-Test®	Fresco – Meglio sostituire – Andato a male	60 (ricarica 30)	1.10653.0001	1.10654.0001	Colorimetrico, sec. il principio della determinazione degli acidi grassi ossidati (OFA)

Accessori per kit MColortest™ e MQuant™

Prodotto	N° Cat.
Provette lunghe con fondo piatto e tappo a vite per MColortest™ con scheda cromatica (1 conf. = 12 pz.)	1.14901.0001
Provette con fondo piatto e tappo a vite per MColortest™ titrimetrici e colorimetrici (1 conf. = 12 pz.)	1.14902.0001
Provette con fondo piatto e tappo a vite per MColortest™ con disco cromatico (1 conf. = 12 pz.)	1.17988.0001
Recipienti graduati a 5 mL e 10 mL, per kit MColortest™ e MQuant™ (1 conf. = 30 pz.)	1.17989.0001

Laboratori compatti - La qualità incontra la mobilità

Laboratorio compatto MColortest™ per l'analisi dell'acqua | N° Cat. 1.11151.0001

Determinazione di pH, ammonio, domanda biologica d'ossigeno (BOD), durezza carbonatica, durezza totale, durezza residua, nitrati, nitriti, fosfati e ossigeno.

Questo laboratorio compatto consente di controllare rapidamente tutti i parametri principali dell'acqua di superficie stagnante o corrente e di valutare accuratamente la qualità istantanea dell'acqua.

Compresi nella fornitura

Parametro	Intervallo di misura	N° di test	N° Cat. ricarica
Ammonio, kit MColortest™	0,2 - 5 mg/L NH ₄	50	1.08024.0001
Durezza carbonatica/ Capacità acida fino a pH 4,3 (ANC), kit MColortest™	0,25 – 25 °e ANC: 0,1 – 7,2 mmoli/L	150 a 12,5 °e	1.08048.0001
Durezza totale, kit MColortest™	0,25 °e e 10 mg/L	150 a 12,5 °e	1.08039.0001
Fosfati, kit MColortest™ per acque dolci e di mare	0,25 - 3,0 mg/L PO ₄	100	1.14661.0001
Nitrati, kit MColortest™	10 - 150 mg/L NO ₂	100	1.11170.0001
Nitriti, kit MColortest™	0,025 - 0,5 mg/L NO ₂	200	1.08025.0001
Ossigeno, kit MColortest™	0,1 mg/L O ₂	100 a 8,5 mg/L O ₂	1.11107.0001
pH, kit MColortest™	pH 4,5 - 9	200	1.08027.0001
Provette con fondo piatto e tappo a vite per kit MColortest™		3 pz.	
Recipienti per test con tacca a 5 mL		1 pz.	
Termometro			

SCREENING IN MOVIMENTO

oual è la qualità del suo latte?

Rilevazione dell'attività perossidasica nel latte

L'applicazione

- La qualità del latte dipende decisamente dalla buona riuscita del trattamento termico.
- Se il latte viene riscaldato ad una temperatura superiore a 85 °C, l'enzima lattoperossidasi (POD) viene inattivata completamente.
- Il trattamento ad altissima temperatura (UHT) del latte può così essere controllato e documentato.
- Quando si rileva della lattoperossidasi, significa che sono state mantenute le temperature richieste per la pastorizzazione e che il latte è stato pastorizzato con successo.
- Per i prodotti lattiero caseari, è di solito sufficiente una valutazione sì / no.

La nostra soluzione: strisce reattive MQuant™ per la perossidasi

Con il kit qualitativo MQuant[™] per la perossidasi, può ora rilevare l'enzima nei Suoi campioni di latte in modo rapido ed economico, invece di ricorrere a lunghe procedure fotometriche, e dimostrare che il latte è stato trattato in modo blando.

Questo test è affidabile tanto quanto il metodo fotometrico di riferimento (DIN 10483-1), ma decisamente più veloce. Inoltre, è pratico e versatile e può essere utilizzato direttamente sul luogo di campionamento.

Vantaggi

- Determinazione perossidasica nel latte in tutta semplicità
- Impiego versatile direttamente sul luogo di campionamento
- Costi contenuti, ridotte esigenze di tempo
- Facilità di valutazione con una scala cromatica, nel caso venga rilevata dell'attività

Per saperne di più: www.merckmillipore.com/aaf

Strisce reattive

MQuant™

Informazioni generali	140
Qual è il contenuto di glucosio dei Suoi alimenti?	140
Il Suo marchio, le nostre strisce reattive	143
Strisce reattive MQuant™	144
Cartine reattive	146



Flusso di lavoro per alimenti e bevande > Pagina 30

Strisce reattive

Le strisce reattive MQuant™, altamente affidabili e portatili, sono state ideate per determinazioni semiquantitative di ioni e composti. Queste strisce così versatili possono essere utilizzate in un intervallo di concentrazione che va da 1 mg/L fino all'ordine dei g/L.

Le strisce reattive consentono un considerevole risparmio di tempo e di costi durante le analisi, i controlli della qualità e i controlli nel corso del processo. Grazie al loro supporto costituito da una pellicola in PET e al basso contenuto di reagente, lo smaltimento delle strisce reattive non presenta problemi.

Determinazioni semiquantitative del glucosio

L'applicazione

- Il glucosio è un parametro importante per numerosi alimenti e bevande e viene regolarmente determinato in materie prime e prodotti finiti.
- I metodi tradizionali per l'analisi del glucosio prevedono lunghe determinazioni enzimatiche da effettuare in laboratorio.

La nostra soluzione: strisce reattive MQuant™ per il glucosio

Le strisce reattive MQuant™ per il glucosio consentono di eseguire le analisi rapidamente, a costi contenuti e ovunque. Producono risultati semiquantitativi affidabili e sono ideali per rapidi screening dei campioni sul posto, quando non c'è tempo per le analisi di laboratorio.

Vantaggi

- Kit tascabili per applicazioni "in situ"o in laboratorio
- Facilità di smaltimento
- Facilità d'uso garantita grazie alle istruzioni illustrate in etichetta
- Risultati rapidi e accurati in pochi minuti
- Soluzione economicamente vantaggiosa

Per altre applicazioni, visiti: www.merckmillipore.com/aaf

Rapidità, semplicità, sicurezza

Risultati rapidi, impiego semplice, smaltimento sicuro

rutto per cei...

Tutti gli intervalli di concentrazione

scale cromatiche dai colori brillanti per risultati esatt

Altre applicazioni MQuant™

Qualità degli oli per frittura

Oli e grassi utilizzati per la frittura a immersione nel tempo si decompongono, generando acidi grassi liberi. Quando superano la soglia accettabile, questi acidi incidono sulla qualità degli alimenti fritti. Con le strisce reattive a lettura visiva MQuant™ per acidi grassi liberi è facile tenere sotto controllo la qualità dell'olio e stabilire quando è il momento di cambiarlo.

(MQuant™ per acidi grassi liberi | N° Cat. 1.17046.0001)

Sicurezza dopo la disinfezione

Residui dei disinfettanti utilizzati nella produzione alimentare, negli ospedali e nelle aziende biotecnologiche e farmaceutiche possono causare seri problemi. Le strisce reattive MQuant™ aiutano a monitorare il processo di pulizia controllando le concentrazioni effettive dei disinfettanti. Offriamo kit per l'analisi di: cloro, formaldeide, acido peracetico, perossido e composti dell'ammonio quaternario.

È così semplice!

Preparazione dei campioni

I kit MQuant™ contengono tutti i reagenti necessari, inclusi quelli per il pretrattamento dei campioni.

O2 Analis

Estrarre una striscia $MQuant^{TM}$ dal tubetto di protezione.

Immergere una striscia nella soluzione in esame e bagnare le zone reattive. Rimuovere il liquido in eccesso scuotendo la striscia o passandola sul bordo del recipiente.

Trascorso il tempo di reazione specificato (massimo un minuto), confrontare il colore della zona reattiva con la scala cromatica stampata in etichetta per leggere la concentrazione corrispondente.

Smaltimento

Le strisce reattive MQuant™ possono essere smaltite in tutta semplicità e sicurezza con i normali rifiuti.

Periodo di validità e conservazione

Se conservate in un luogo fresco (in alcuni casi è necessaria la refrigerazione) e asciutto, le strisce reattive si mantengono almeno fino a tre anni (dettagli stampati sulla confezione). Per garantire la protezione delle strisce reattive non utilizzate, richiudere il tubetto subito dopo avere estratto una striscia.

Assicurazione della qualità

Merck Millipore effettua il controllo e la calibrazione di tutti i kit MQuant™ e delle scale cromatiche utilizzando soluzioni standard certificate, direttamente tracciabili agli standard di riferimento primari del NIST e del PTB.

Desidera apporre il Suo marchio sulle nostre strisce reattive o sui tubetti che le contengono? Scelga tra le possibilità qui di seguito descritte.

Strisce reattive confezionate singolarmente

Le strisce reattive personaizzate sono ideali da inserire in libri, riviste e brochure o da incollare sui prodotti.

Tubetti con un elenco di voci o strisce reattive personalizzate

Quasi tutto è personalizzabile, dal design della carta cromatica al prodotto finale, compreso l'intervallo di misurazione.

Prodotti innovativi su misura

Se il test che Le serve non è tra quelli proposti, Le produrremo strisce reattive su misura per soddisfare le Sue esigenze.

Per informazioni sui quantitativi minimi e per maggiori dettagli, visitare la pagina: www.merckmillipore.com/customized-test-strips

Il suo Marchio, le nostre strisce reattive

MQuant™

Strisce reattive | Parametri A-N

	Parametro	Scala graduata	N° di test	N° Catalogo	Metodo	Tipo
A	Acidi grassi liberi	0,5-1,0-2,0-3,0 mg/g KOH	100	1.17046.0001	Indicatore del pH	
	Acido ascorbico	50-100-200-300-500-700-1.000-2.000 mg/L acido ascorbico	100	1.10023.0001	Blu di fosfomolibdeno	
	Acido peracetico	5-10-20-30-50 mg/L acido peracetico	100	1.10084.0001	Reazione di ossidoriduzione	
	Acido peracetico	20-40-80-120-160 mg/L acido peracetico	100	1.17976.0001	Reazione di ossidoriduzione	
	Acido peracetico	100–150–200–250–300–400–500 mg/L acido peracetico	100	1.10001.0001	Reazione di ossidoriduzione	
	Acido peracetico	500–1.000–1.500–2.000 mg/L acido peracetico	100	1.17922.0001	Reazione di ossidoriduzione	
	Alluminio	10-25-50-100-250 mg/L Al	100	1.10015.0001	Acido aurintricarbossilico	Reagente incl.
	Ammonio	$103060100200400 \text{ mg/L NH}_{\scriptscriptstyle 4}$	100	1.10024.0001	Neßler	Reagente incl.
	Arsenico	0,005-0,010-0,025-0,05-0,10-0,25-0,5 mg/L As	100	1.17927.0001	Saggio di Gutzeit modificato	Reagente incl.
	Arsenico	0,02-0,05-0,1-0,2-0,5 mg/L As 0,1-0,5-1,0-1,7-3,0 mg/L As	100	1.17917.0001	Saggio di Gutzeit modificato	Reagente incl.
C	Calcio	10-25-50-100 mg/L Ca	60	1.10083.0001	Gliossale-bis-idrossianile	Reagente incl.
	Cianuri	1-3-10-30 mg/L CN	100	1.10044.0001	Reazione di König	Reagente incl.
	Cloro (cloro libero)	0,5-1-2-5-10-20 mg/L Cl ₂	75	1.17925.0001	Reazione di ossidoriduzione	
	Cloro (cloro libero)	25-50-100-200-500 mg/L Cl ₂	100	1.17924.0001	Reazione di ossidoriduzione	
	Cloruri	500-1.000-1.500-2.000-≥3.000 mg/L Cl	100	1.10079.0001	Cromato d'argento	
	Cobalto	10-30-100-300-1.000 mg/L Co	100	1.10002.0001	Tiocianato	
	Composti di ammonio quaternario	10–25–50–100–250–500 mg/L Benzalconio cloruro	100	1.17920.0001	Indicatore	
	Cromati	3-10-30-100 mg/L CrO ₄	100	1.10012.0001	Difenilcarbazide	Reagente incl.
D	Durezza carbonatica	5-10-15-20-30 °e	100	1.10648.0001	Miscela di indicatori	
	Durezza totale	<4->5->9->18->26 °e	100	1.10025.0001	EDTA	
	Durezza totale	<4->5->9->18->26 °e	5.000	1.10029.0001		Strisce reattive singole
	Durezza totale	<4->5->9->18->26 °e	1.000	1.10032.0001		Confezionate singolarmente
	Durezza totale	>6->13->19->25->31 °e	100	1.10046.0001		
	Durezza totale	>6->13->19->25->31 °e	25.000	1.10047.0013		Confezionate singolarmente
	Durezza totale	<1,5; 1,5-2,5; >2,5 mmol/L CaCO ₃	100	1.17934.0001		
F	Ferro	3-10-25-50-100-250-500 mg/L Fe(II)	100	1.10004.0001		
	Formaldeide	10-20-40-60-100 mg/L HCHO	100	1.10036.0001		Reagente incl.
	Fosfati	10-25-50-100-250-500 mg/L PO ₄	100		Ione molibdato	Reagente incl.
G	Glucosio	10-25-50-100-250-500 mg/L glucosio	50		Reazione enzimatica	
M	Manganese	2–5–20–50–100 mg/L Mn	100		Indicatore redox	Reagente incl.
	Molibdeno	5-20-50-100-250 mg/L Mo	100		Toluene-3,4-ditiolo	Reagente incl.
N	Nichel	10-25-100-250-500 mg/L Ni	100		Dimetilgliossima	
	Nitrati	10-25-50-100-250-500 mg/L NO ₃	100	1.10020.0001	Reazione di Griess modificata	
	Nitrati	10-25-50-100-250-500 mg/L NO ₃	25	1.10020.0002	Reazione di Griess modificata	

Analisio della bira Succhi Acue minerali Acue minerali Bibie								Table of the political					, de la composition della comp	Parametro				
_	Alin	nenti e	e beva	nde	~	•		•	Acau	ı <mark>a (an</mark>	alisi)	v	~	•	•	Altro		Parametro
																		Acidi grassi liberi
																		Acido ascorbico
																		Acido peracetico
																		Acido peracetico
																-		red peracetics
																		Acido peracetico
																		Acido nomeostico
																		Acido peracetico
																		Alluminio
																		Ammonio
																		Arsenico
									•									Arsenico
				_											_			
																		Calcio
																_		Cianuri
																		Cloro
																		Cloro
														_		-		Cloro
																		Cloruri
	_								_									Cobalto
																		Composti di ammonio
																		quaternario
																		Cromati
																		Durezza carbonatica
																		Durezza totale
									-									Durezza totale
																		Durezza totale
									_									Dai GZZa totaic
																		Durezza totale
																		Durezza totale
																		2
		_																Durezza totale
	_															_		Ferro
																		Formaldeide
																		Fosfati
	•																	Glucosio
																		Malibdana
																		Molibdeno Nichel
									-									Nitrati
																		Nitrati

MQuant™

Strisce reattive | Parametri N-Z

	Parametro	Scala graduata	N° di test	N° Catalogo	Metodo	Tipo
N	Nitrati	10-25-50-100-250-500 mg/L NO ₃	1.000	1.10092.0021	Reazione di Griess modificata	Confezionate singolarmente
	Nitriti	0,5-1-2-5-10 mg/L NO ₂	75	1.10057.0001	Reazione di Griess	
	Nitriti	2-5-10-20-40-80 mg/L NO ₂	100	1.10007.0001	Reazione di Griess	
	Nitriti	2-5-10-20-40-80 mg/L NO ₂	25	1.10007.0002	Reazione di Griess	
	Nitriti	0,1-0,3-0,6-1-2-3 g/L NO ₂	100	1.10022.0001	Reazione di Griess	
P	Perossidasi	Risultato sì/no	100	1.17828.0001	Reazione enzimatica	
	Perossidi	0,5-2-5-10-25 mg/L H ₂ O ₂	100	1.10011.0001	Reazione enzimatica	
	Perossidi	0,5-2-5-10-25 mg/L H ₂ O ₂	25	1.10011.0002	Reazione enzimatica	
	Perossidi	1-3-10-30-100 mg/L H ₂ O ₂	100	1.10081.0001	Reazione enzimatica	
	Perossidi	100-200-400-600-800-1.000 mg/L H ₂ O ₂	100	1.10337.0001	Reazione enzimatica	
	Piombo	20-40-100-200-500 mg/L Pb	100	1.10077.0001	Acido rodizonico	Reagente incl.
	Potassio	250-450-700-1.000-1.500 mg/L K	100	1.17985.0001	Dipicrilammina	Reagente incl.
R	Rame	10-30-100-300 mg/L Cu	100	1.10003.0001	2,2'-bichinolina	
S	Solfati	<200->400->800->1.200->1.600 mg/L SO ₄	100	1.10019.0001	Complesso Ba-Thorin	
	Solfiti	10-40-80-180-400 mg/L SO ₃	100	1.10013.0001	Nitroprussiato/Zn- esacianoferrato	
	Stagno	10-25-50-100-200 mg/L Sn	50	1.10028.0001	Toluene-3,4-ditiolo	Reagente incl.
	Strisce di bianco		100	1.11860.0001		
Z	Zinco	0-4-10-20-50 mg/L Zn	100	1.17953.0001	Ditizone	

Cartine reattive

N° Cat. 1.09511.0003

La cartina all'acetato di piombo(II) è utilizzata per la ricerca di solfuri e acido solfidrico

Cartina all'amido e ioduro di potassio, grado Reag. Farm. Eu., 3 rotoli da 4,8 metri l'uno

N° Cat. 1.09512.0003

La cartina all'amido e ioduro di potassio è utilizzata per la ricerca degli agenti ossidanti

													Parametro			
	Alin	nenti e	e beva	nde					Acqu	ıa (an	alisi)			Altro		
	-					-		-	-	-						Nitrati
																Nitriti
																Nitriti
																Nitriti
																Nitriti
																Perossidasi
																Perossidi
																Perossidi
																Perossidi
																Perossidi
																Piombo
																Potassio
																Rame
								-	-	-			-			Solfati
	-	•		•	-		-						-			Solfiti
																Stagno
																Strisce di bianco
																Zinco

zona di controllo "bianca"

Le strisce reattive MQuant[™] Blank hanno una zona priva di reagenti che permette di controllare se la soluzione del campione determina una variazione di colore della zona "bianca"

PRENDA LA CORSIA PRIORITARIA

на difficoltà a misurare il рн di campioni torbidi?

Determinazioni del pH rapide e chiare nelle soluzioni torbide

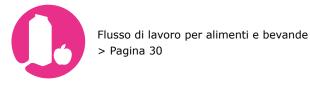
L'applicazione

- Analizzare i liquidi torbidi o colorati con le strisce indicatrici tradizionali può essere terribilmente difficile
- Le particelle sospese, accumulandosi nella zona reattiva, possono oscurare il colore e rendere impossibile la lettura del pH.
- L'impiego di elettrodi per pH comporta ampie esigenze di lavaggio e manutenzione.

La nostra soluzione: strisce indicatrici per pH MColorpHast™ non rilascianti colore

Le nostre strisce indicatrici trasparenti, appositamente ideate per le soluzioni torbide, evitano le fasi di preparazione del campione, come la filtrazione o la chiarifica. Il supporto della zona reattiva è costituito da una pellicola trasparente, su cui potrà effettuare la lettura del pH.

Vantaggi


- Le strisce non rilasciano colore, evitando la contaminazione del mezzo
- Strisce trasparenti per risultati chiari in liquidi leggermente colorati o torbidi
- Metodo rapido e semplice; non richiede la preparazione dei campioni
- Risultati affidabili, grazie a scale cromatiche dai colori brillanti
- La confezione SafetyEdge offre la massima sicurezza e praticità

Strisce e cartine indicatrici per pH MColorpHast™

Informazioni generali	150
Confezione SafetyEdge	150
Strisce e cartine indicatrici per pH	152

MColorpHast™

È sufficiente leggere il colore...

Strisce e cartine indicatrici per pH

MColorpHast™ rende le determinazioni del pH più semplici che mai. Nessuno strumento, nessuna preparazione dei campioni, nessuna manutenzione, nessun elettrodo da lavare. È sufficiente leggere il colore. Questo metodo rapido offre una scala cromatica accurata a garanzia di risultati chiari e affidabili. È adatto per tutti i mezzi utilizzati nelle analisi ambientali e nei controlli industriali "in-process". Con la nostra ampia gamma di unità per la determinazione del pH, qualunque sia la Sua applicazione troverà sempre la soluzione ottimale.

CONFEZIONE SAFETYEDGE

Misura il pH?

Approfitti dei massimi livelli di sicurezza e semplicità con la nostra confezione SafetyEdge. La chiusura antimanomissione garantisce che il contenitore non sia stato precedentemente aperto, mentre l'innovativo angolo con apertura a scatto consente di estrarre con facilità le strisce indicatrici, impedendone però la caduta.

Si occupa di applicazioni speciali?

Semplifichi il Suo flusso di lavoro con le nostre strisce indicatrici per esigenze speciali, come l'analisi di campioni torbidi o delle carni.

Flusso di lavoro per alimenti e bevande > Pagina 30

Per saperne di più sulle nostre strisce indicatrici: www.merckmillipore.com/pH-tests

metodo rapido e semplice

non rilasciano colore

colori brillanti

per analisi affidabili

Con la nostra ampia gamma di unità per la determinazione del pH, qualunque sia la Sua applicazione troverà sempre la soluzione ottimale.

Cartine indicatrici di prima qualità

Carta da filtro di alta qualità nel formato in rotolo; protegge le Sue analisi da fattori esterni quali umidità, luce e gas ambientali; inoltre, consente una conservazione prolungata.

Strisce indicatrici MColorpHast™ non rilascianti colore

I diversi indicatori sono fissati alle cartine covalentemente. Ciò evita il rilascio dell'indicatore e consente di lasciare le strisce a lungo nel mezzo in esame, senza contaminare il campione.

MColorpHast™

Strisce e cartine indicatrici per pH

Cartine indicatrici per pH

Prodotto	Intervallo di misura del pH	Scala graduata	Lungh. rotolo/N° strisce	N° Catalogo
In rotolo				
рН-Вох	0,5 - 13,0	0,5-1,0-1,5-2,0-2,5-3,0-3,5-4,0-4,5-5,0- 5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0-9,5-10,0- 10,5-11,0-11,5-12,0-12,5-13,0	3 x 4,8 m	1.09565.0001
Cartina indicatrice per pH, ricariche*	0,5 - 5,0	0,5-1,0-1,5-2,0-2,5-3,0-3,5-4,0-4,5-5,0	6 x 4,8 m	1.09568.0001
Cartina indicatrice per pH, ricariche*	5,5 - 9,0	5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0	6 x 4,8 m	1.09569.0001
Cartina indicatrice per pH, ricariche*	9,5 - 13,0	9,5-10,0-10,5-11,0-11,5-12,0-12,5-13,0	6 x 4,8 m	1.09570.0001
Cartina indicatrice per pH, indicatore universale	1 - 14	1,0-2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0-10,0- 12,0-14,0	3 x 4,8 m	1.10962.0003
Cartina indicatrice per pH, ricariche*	1 - 14	1,0-2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0-10,0- 12,0-14,0	6 x 4,8 m	1.10232.0001
Cartina indicatrice per pH, indicatore universale	1 - 10	1,0-2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0-10,0	3 x 4,8 m	1.09526.0003
Cartina indicatrice per pH, ricariche*	1 - 10	1,0-2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0-10,0	6 x 4,8 m	1.09527.0001
Cartina indicatrice per pH Acilit®	0,5 - 5,0	0,5-1,0-1,5-2,0-2,5-3,0-3,5-4,0-4,5-5,0	3 x 4,8 m	1.09560.0003
Cartina indicatrice per pH, ricariche*	0,5 - 5,0	0,5-1,0-1,5-2,0-2,5-3,0-3,5-4,0-4,5-5,0	6 x 4,8 m	1.09568.0001
Cartina indicatrice per pH Neutralit®	5,5 - 9,0	5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0	3 x 4,8 m	1.09564.0003
Cartina indicatrice per pH, ricariche*	5,5 - 9,0	5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0	6 x 4,8 m	1.09569.0001
Cartina indicatrice per pH Alkalit®	9,5 - 13,0	9,5-10,0-10,5-11,0-11,5-12,0-12,5-13,0	3 x 4,8 m	1.09562.0003
Cartina indicatrice per pH, ricariche*	9,5 - 13,0	9,5-10,0-10,5-11,0-11,5-12,0-12,5-13,0	6 x 4,8 m	1.09570.0001
Cartina indicatrice per pH, indicatore speciale	3,8 - 5,4	<3,8-3,8-4,1-4,4-4,6-4,8-5,1-5,4	3 x 4,8 m	1.09555.0003
Cartina indicatrice per pH, indicatore speciale	5,4 - 7,0	<5,4-5,4-5,8-6,2-6,4-6,7-7,0->7,0	3 x 4,8 m	1.09556.0003
Cartina indicatrice per pH, indicatore speciale	6,4 - 8,0	6,4-6,7-7,0-7,2-7,5-7,7-8,0->8,0	3 x 4,8 m	1.09557.0003
Cartina indicatrice per pH, indicatore speciale	8,2 - 10,0	<8,2-8,2-8,5-8,8-9,0-9,3-9,6-10,0	3 x 4,8 m	1.09558.0003
Cartina al tornasole, blu, Reag. Farm. Eu.	pH <4 rossa / >9 blu	-	3 x 4,8 m	1.09486.0003
Cartina al tornasole, rossa, Reag. Farm. Eu.	pH <4 rossa / >9 blu	-	3 x 4,8 m	1.09489.0003
Cartina al rosso Congo, Reag. Farm. Eu.	pH <2 azzurro- violetto / >5 rosso-arancio	-	3 x 4,8 m	1.09514.0003
Cartina alla fenolftaleina	pH <8 incolore / >9 rossa	-	3 x 4,8 m	1.09521.0003
A libretto				
Cartina indicatrice per pH, indicatore universale	1 - 10	1,0-2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0-10,0	3 x 100	1.09525.0003

^{*} Rotoli di ricambio senza scala cromatica

Periodo di validità e conservazione

- Per condizioni ottimali fino a 3-5 anni, conservare a 10-25 °C
- Tenere al riparo dalla luce e dall'umidità
- Chiudere la confezione immediatamente dopo avere estratto una striscia o un rotolo

Strisce indicatrici per pH (non rilascianti colore)

Prodotto	Intervallo di misura del pH	Scala graduata	N. di strisce reattive	N° Catalogo
Strisce indicatrici per pH, indicatore universale	0 - 14	0-1-2-3-4-5-6-7-8-9-10-11-12-13-14	100	1.09535.0001
Strisce indicatrici per pH	0 - 6,0	0-0,5-1,0-1,5-2,0-2,5-3,0-3,5-4,0-4,5-5,0- 5,5-6,0	100	1.09531.0001
Strisce indicatrici per pH	5,0 - 10,0	5,0-5,5-6,0-6,5-7,0-7,5-8,0-8,5-9,0-9,5- 10,0	100	1.09533.0001
Strisce indicatrici per pH	7,5 - 14,0	7,5-8,0-8,5-9,0-9,5-10,0-10,5-11,0-11,5- 12,0-12,5-13,0-13,5-14,0	100	1.09532.0001
Strisce indicatrici per pH	2,0 - 9,0	2,0-2,5-3,0-3,5-4,0-4,5-5,0-5,5-6,0-6,5- 7,0-7,5-8,0-8,5-9,0	100	1.09584.0001
Strisce indicatrici per pH	0 - 2,5	0-0,5-1,0-1,3-1,6-1,9-2,2-2,5	100	1.09540.0001
Strisce indicatrici per pH	2,5 - 4,5	2,5-3,0-3,3-3,6-3,9-4,2-4,5	100	1.09541.0001
Strisce indicatrici per pH	4,0 - 7,0	4,0-4,4-4,7-5,0-5,3-5,5-5,8-6,1-6,5-7,0	100	1.09542.0001
Strisce indicatrici per pH	6,5 - 10,0	6,5-6,8-7,1-7,4-7,7-7,9-8,1-8,3-8,5-8,7- 9,0-9,5-10,0	100	1.09543.0001
Strisce indicatrici per pH	11,0 - 13,0	11,0-11,5-11,8-12,1-12,3-12,5-12,8-13,0	100	1.09545.0001

Strisce indicatrici per pH (ad uso professionale)

Prodotto	Intervallo di misura del pH	Scala graduata	N. di strisce reattive	N° Catalogo
Strisce indicatrici per pH, indicatore speciale per determinazioni in soluzioni torbide (sospensioni)	2,0 - 9,0	2,0-3,0-4,0-5,0-6,0-7,0-8,0-9,0	100	1.09502.0001
Strisce indicatrici per pH, indicatore speciale per determinazioni nelle carni	5,2 - 7,2	5,2-5,6-6,0-6,4-6,8-7,2	100	1.09632.0001
Strisce indicatrici per pH, confezionate singolarmente	2,0 - 9,0	2,0-2,5-3,0-3,5-4,0-4,5-5,0-5,5-6,0-6,5- 7,0-7,5-8,0-8,5-9,0	1.000	1.09450.0010
Strisce indicatrici per pH, confezionate singolarmente	2,0 - 9,0	2,0-2,5-3,0-3,5-4,0-4,5-5,0-5,5-6,0-6,5- 7,0-7,5-8,0-8,5-9,0	25.000	1.09450.0013

strisce confezionate singolarmente

Su richiesta, possiamo offrire strisce reattive confezionate singolarmente per intervalli di pH standard o speciali. Esse possono anche essere personalizzate con il Suo marchio, il che le rende ideali da inserire in riviste e brochure o da incollare sui prodotti.

www.merckmillipore.com/customized-test-strips

PRONTI A TUTTO

si procuri tutti gli strumenti che servono per procedure analitiche e di monitoraggio sicure.

Da un'unica fonte fidata.

Abbiamo tutto quello che serve per i Suoi flussi di lavoro: dalle soluzioni originali per il monitoraggio microbiologico e la cromatografia all'acqua ultrapura, a una gamma completa di reagenti e solventi. Ma questo non è tutto.

Grazie alla combinazione delle nostre competenze analitiche e legislative, siamo in grado di assicurarle risultati costantemente accurati accompagnati da una consistente documentazione. Inoltre, creando prodotti e soluzioni che riducono i costi, aumentano l'efficienza e sfruttano le risorse al meglio, contribuiamo a incrementare la Sua produttività. Pertanto, non ci limitiamo a fornire prodotti della massima qualità, ma offriamo la tranquillità più totale.

Può trovare un'esauriente panoramica dei nostri prodotti nei siti:

www.merckmillipore.com www.sigma-aldrich.com

Flusso di lavoro per le acque di riscaldamento e raffreddamento

> Pagina 20

Flusso di lavoro per le acque reflue > Pagina 22

Flusso di lavoro per le acque potabili

> Pagina 24

Flusso di lavoro per le acque in bottiglia

> Pagina 26

Flusso di lavoro per i birrifici

> Pagina 28

Flusso di lavoro per il food and beverage

> Pagina 30

Prodotti complementari Analisi e monitoraggio

Analisi microbiologiche e ricerca di agenti patogeni 158
Cromatografia e reagenti inorganici 158
Fotometria classica e standard di pesticidi 160
Analisi di ingredienti e nutrizionali 161
Sistemi per la purificazione dell'acqua 163

Prodotti complementari

Analisi Microbiologiche

Strumenti semplici, rapidi e affidabili a garanzia dell'assenza di contaminanti microbiologici nei Suoi impianti produttivi

Verifichi rapidamente l'assenza o la presenza di coliformi ed *E. coli* con Readycult[®]

- Approvati dall'USEPA per la determinazione della presenza/ assenza di coliformi e E. coli nelle acque potabili
- Test all'indolo opzionale per un'accurata conferma, in 30 secondi, della presenza di E. coli
- Readycult® Coliforms 100 [N° Cat. 1.01298.0001]
- Readycult® Enterococci 100 [N° Cat. 1.01299.0001]

Ricerchi qualunque tipo di contaminazione microbiologica

- Chromocult®: colori diversi per ogni tipo di colonia garantiscono una chiara identificazione e facilità nel conteggio [N° Cat. 1.10426.0500]
- Piastre agarizzate pronte all'uso: non richiedono ulteriori preparazioni! [N° Cat. 1.46689.0020, 1.46757.0020 e 1.46758.0150]

Determini con facilità la carica microbica di campioni liquidi

- Soddisfi gli standard (EP/USP) e le norme relative all'analisi dell'acqua internazionali
- Unità filtrante EZ-Fit™: 1, 3 o 6-posti [N° Cat. EZFITEFUN1, EZFITEFUN3, EZFITEFUN6]
- Membrane per unità filtrante EZ-Fit™ [N° Cat. EFHAB100I, EFHAB250B, EFHAB250I, EFHAW100B, EFHAW100I, EFHAW250B, EFHAW250I]
- Pompa EZ-Stream™ [N° Cat. EZSTREAM1]
- Membrane EZ-Pak® da utilizzare con il dispensatore di membrane EZ-Pak® Curve [N° Cat. delle membrane: es. EZAAWG474; N° Cat. del dispensatore Curve: EZCURVE01]

monitoraggio ambientale

Usi i nostri precisisssimi campionatori d'aria per monitorare in modo semplice ed efficace i microrganismi nell'aria e nei gas compressi.

- MAS-100 Eco®: per ambienti sterili e le aree produttive alimentari ad alto rischio [N° Cat. 1.09227.0001]
- MAS-100 NT®: standard di riferimento nell'industria per il monitoraggio dell'aria di routine [N° Cat. 1.09191.0001]
- MAS-100 Iso MH®: consente di campionare 4 punti di un isolatore alla volta; lunghezza massima di ogni tubo 10 m [N° Cat. 1.17174.0001 o 1.17149.0001]
- MAS-100 VF®: design compatto e portatile che consente di variare i punti di campionamento [Nº Cat. 1.17103.0001]
- Pompa di campionamento ARIES™ EX Dual Personal: dispositivo di ultima generazione con campatibilità Bluetooth® e strumento di controllo del flusso di massa brevettato [N° Cat. 30251-U]

Prodotti complementari

cromatografia analitica

Deve separare i composti di un campione o effettuare indagini più dettagliate? Quale valido aiuto per le Sue applicazioni, offriamo un'ampia gamma di prodotti d'avanguardia per la cromatografia e per la preparazione dei campioni.

Colonne da HPLC per diverse tipologie di separazione:

- Chromolith®: pressione ridotta, analisi rapide, lunga durata delle colonne [N° Cat. 1.52022.0001]
- Purospher® Star: eccellente simmetria dei picchi, elevata efficienza nelle separazioni, vasta stabilità al pH, riproducibilità tra lotto e lotto [N° Cat. 1.50359.0001]
- **SeQuant® ZIC®-HILIC** e **ZIC®-cHILIC**: selettività superiore nella separazione di composti idrofili polari [N° Cat. 1.50441.0001]

Lastrine in silice ad elevate prestazioni (HPTLC): per analisi rapide di campioni complessi

Extrelut®: efficace estrazione liquido-liquido (LLE)

LiChrolut®: estrazione in fase solida (SPE) rapida e affidabile

Watercol™: colonne per gascromatografia (GC) capillare per comode determinazioni dell'acqua. Per saperne di più: www.sigma-aldrich.com/watercol

reagenti inorganici

Analisi inorganiche classiche

Sali

A -: -:

Basi e alcali caustici

Metalli e loro ossidi

Analisi inorganiche strumentali

Soluzioni volumetriche

Reagenti e standard per Karl Fischer

Materiali di riferimento

Flussi per XRF

Acidi e basi ad elevata purezza

Sali ad elevata purezza

Prodotti per la sicurezza e di uso generale

Assorbimento e filtrazione

Assorbenti per lo spargimento di liquidi

Agenti essiccanti

Prodotti ausiliari per la purificazione e la preparazione di campioni

Indicatori

Pulizia

oualità Massima

conformità a acs e reag. Farm. Eu.

IMPUREZZEMinime

Prodotti complementari

rotometria classica

Le analisi inorganiche solitamente implicano l'arricchimento e l'isolamento di elementi in tracce prima della determinazione fotometrica. Per entrambe queste fasi, offriamo un'ampia gamma di reagenti di elevata qualità in grado di rendere le analisi più efficienti ed economiche sin dall'inizio.

- Kit per la chiarifica secondo Carrez per la preparazione dei campioni nelle analisi alimentari: precipita le proteine, elimina la torbidità e rompe le emulsioni in campioni di carne o latte [N° Cat. 1.10537.0001]
- Carbone attivo: per decolorazione [N° Cat. 1.02005.0010]

Trovi i reagenti di cui ha bisogno

analisi efficienti e economiche

standard di pesticidi

I pesticidi vengono immessi nell'ambiente per uccidere i parassiti. Ma residui di questi prodotti chimici tossici possono finire anche nell'aria, nelle acque e persino negli alimenti. Le norme internazionali richiedono la regolare analisi di suolo e acque con l'impiego di standard accurati, per essere certi che essi non contengano pesticidi.

Offriamo più di 1700 standard di pesticidi ad elevata purezza e materiali di riferimento certificati, tra cui:

- pesticidi, tal quali e in soluzione
- materiali di riferimento certificati (CRM) TraceCERT® e standard in matrice
- standard in matrice per proficiency test (PT) (vedere pagina 106)
- pesticidi marcati con isotopi e standard di metaboliti dei pesticidi

e fragranze

Desidera intensificare aromi e fragranze dei Suoi prodotti alimentari? O deve analizzare queste carattetistiche? Con le nostre materie prime di elevata qualità, gli strumenti analitici, i materiali di riferimento e la documentazione, potrà assicurare ai Suoi Clienti sicurezza e soddisfazione.

Per saperne di più: www.sigmaaldrich.com/industries/flavors-and-fragrances.html

nalisi nutrizionali

Per tutti i prodotti alimentari sono richieste informazioni accurate sul contenuto di proteine e di fibre. Per semplificare il Suo lavoro, offriamo affidabili kit per la determinazione della fibra alimentare e reagenti specifici per l'analisi dell'azoto secondo Kjeldahl, il metodo officiale per la determinazione del tenore proteico degli alimenti.

- Kit di reagenti per semplici determinazioni della quantità totale di fibra alimentare [N° Cat. 1.12979.0001 e TDF100A]
- Compresse per la determinazione dell'azoto secondo Kjeldahl, disponibili anche su microscala [N° Cat. 1.15348.0250, 1.17958.0250, 1.16469.0250, 1.18348.0250, 1.10958.0250, 1.18469.0250]
- Per saperne di più: www.merckmillipore.com/kjeldahl-catalysts

Flusso di lavoro per i birrifici > Pagina 28

Flusso di lavoro per il food and beverage > Pagina 30

Prodotti complementari

reagenti per Karl Fischer

162

Misurare il contenuto di acqua dei prodotti è importante, perché esso può influenzarne qualità, consistenza, durata, stabilità chimica e reattività. La titolazione secondo Karl Fischer è un metodo universalmente riconosciuto per la determinazione del contenuto d'acqua in tutti i tipi di sostanze come oli, prodotti chimici, farmaceutici e alimentari.

Offriamo tutti i prodotti richiesti per le titolazioni Karl Fischer:

- · reagenti volumetrici
- · reagenti monocomponente
- reagenti bicomponente: reagenti speciali per la determinazione dell'acqua in aldeidi, chetoni e altre sostanze difficili da solubilizzare
- reagenti coulometrici: solventi speciali per oli e grassi
- standard di acqua per la determinazione del titolo e il monitoraggio degli strumenti

Per saperne di più

sistemi per la purificazione dell'acqua

Offriamo un'ampia gamma di sistemi per la produzione d'acqua pura ed ultrapura per tutte le applicazioni di laboratorio. L'esclusivo sistema Milli-Q $^{\circ}$ combina le più avanzate tecnologie quali RO intelligente, EDI Elix $^{\circ}$ brevettata, UV di lunga durata, modulo A10 $^{\circ}$ per il monitoraggio del TOC e cartucce per la purificazione finale, per una purezza dell'acqua ai massimi livelli possibili.

Flusso di lavoro per le acque potabili > Pagina 24

Acqua a portata di mano

Gli erogatori Q-POD® e E-POD® semplificano l'impiego del sistema e consentono di visualizzare tutte le informazioni essenziali in un'unità compatta semplice da utilizzare.

 Lavoro quotidiano in laboratorio facilitato
 La comodità e la versatilità d'impiego consentono un'erogazione intuitiva e precisa. Preimposti l'erogazione di un volume preciso mediante il tasto di autoriempimento o eroghi

Spazio libero sul banco

Poiché per l'impiego quotidiano è sufficiente il solo erogatore POD, il sistema può essere comodamente collocato sotto il banco o alla parete.

 Acqua della qualità più adatta per ogni applicazione

Un Application-Pak su ogni POD opera un trattamento finale che produce acqua ideale per ogni esigenza.

l'acqua manualmente, premendo il pistone.

Scopra la nostra completa gamma di sistemi e servizi per l'acqua di laboratorio:

www.merckmillipore.com/labwater

Filtri da siringa Millex®

 Qualità e comodità superiori per analisi strumentali sensibili, es. cromatografia gassosa, liquida o ionica

- Membrane con un basso tenore d'estraibili e un ridotto adsorbimento di analiti
- Elevata compatibilità chimica con quasi qualunque tipo di campione

Per saperne di più

chieda di più

In qualunque parte del mondo si trovi, noi siamo lì per aiutarla. Che Le servano informazioni dettagliate sui prodotti, corsi di formazione, consigli applicativi o istruzioni per lo smaltimento, non deve fare altro che chiedere.

balla a alla z

Servizi e informazioni Indirizzi web diretti Accesso diretto alle informazioni sui prodotti Digiti nel campo di ricerca il numero di catalogo a sei caratteri www.merckmillipore.com di un prodotto, per trovare istruzioni per l'uso, applicazioni, www.sigma-aldrich.com documentazione tecnica, brochure, accessori e prodotti correlati. Aggiornamento dei metodi per i fotometri Aggiorni il software del Suo fotometro per assicurarsi accuratezza www.merckmillipore.com/method-update e compatibilità con i nuovi metodi analitici. · Questo servizio gratuito è disponibile tramite i "link rapidi". Assistenza per gli strumenti Contatti il Servizio Clienti di zona. www.merckmillipore.com/support Vedere anche> Programmi di manutenzione Assistenza tecnica Vedere: Servizio Clienti www.sigma-aldrich.com/technical-service-home.html **B** Brochure Resti aggiornato con le nostre brochure e le guide rapide www.merckmillipore.com/test-kits www.merckmillipore.com/learningcenter più recenti e con altro materiale utile. Centro delle app per dispositivi mobili App per smartphone e tablet, ad es. "Food Testing" e "Industrial" www.merckmillipore.com/apps www.sigma-aldrich.com/mobileappcenter Centro didattico · Più informazioni sui nostri prodotti www.merckmillipore.com/learningcenter Come, guando e dove usarli Certificati Per i nostri prodotti forniamo certificati dei lotti e certificati della www.merckmillipore.com/wfa-documents qualità. Vedere anche: Certificato ISO 14001

	Servizi e informazioni	Indirizzi web diretti				
С	Certificati ISO 57 nostri siti produttivi hanno ottenuto la Certificazione ISO 14001 del sistema di gestione ambientale Nei nostri siti produttivi vengono regolarmente condotti audit interni ed esterni	www.merckmilllipore.com/iso				
	Consigli per lo smaltimento dei rifiuti, online Istruzioni chiare per un corretto smaltimento dei kit usati.	www.disposal-test-kits.com				
	Consulenza e supporto tecnico di esperti Oltre alla consulenza analitica e tecnica da parte dei nostri specialisti di zona, offriamo anche, in quasi tutti i paesi, assistenza immediata da parte di esperti tramite linee telefoniche dirette.	www.merckmillipore.com/support				
	Convalida e accreditamento per i kit analitici Spectroquant® • Tutti i nostri metodi sono convalidati • Certificato della qualità e di lotto a conferma della qualità • Se progetta di convalidare i kit analitici Spectroquant® o di richiedere l'accreditamento, non esiti a contattarci per ottenere la documentazione creata per l'approvazione da parte di enti quali l'USEPA	www.merckmillipore.com/wfa-documents				
	Corsi di formazione e seminari I nostri esperti forniscono consigli pratici utili per evitare errori nelle analisi e offrono suggerimenti e trucchi in vista dell'accreditamento Piccoli gruppi, garantiscono che ciascun partecipante possa ricevere tutta l'attenzione e le informazioni di cui ha bisogno Sono disponibili anche webinar online gratuiti	 www.merckmillipore.com/learningcenter www.merckmillipore.com/support www.sigma-aldrich.com/customer-service.html 				
	Corsi, webinar e webcast on-line Per continuare ad imparare online Vedere anche: webinar, webcast e filmati	www.merckmillipore.com/videoswww.merckmillipore.com/webcasts				
E	E-shop Tutti i nostri prodotti per le analisi delle acque, degli alimenti e ambientali ed altri 350.000 possono essere ordinati on-line 24 ore al giorno, 7 giorni su 7.	www.sigma-aldrich.com				
F	Foglietti illustrativi Informazioni importanti per la manipolazione Allegati ai kit analitici in versione cartacea, possono anche essere scaricati dalle pagine con le informazioni dettagliate sui prodotti.	www.merckmillipore.com/test-kits				
I	Informazioni sui prodotti Vedere: Accesso diretto alle informazioni sui prodotti	www.merckmillipore.com				
M	Manuali Trovi nelle pagine dedicate agli strumenti e ai kit analitici i corrispondenti manuali con dettagliate istruzioni per l'uso.	www.merckmillipore.com/test-kits				

Servizi di assistenza

Chieda di più

	Servizi e informazioni	Indirizzi web diretti
	Servizi e informazioni	Indirizzi web diretti
M	Motore di ricerca per bollettini applicativi analitici Più di 300 applicazioni per i kit Reflectoquant® e Spectroquant® • Si procuri procedure analitiche complete • Scopra i metodi per la preparazione dei campioni • Determini i parametri da misurare • Confronti il Suo processo con altri metodi • Se non trova il bollettino applicativo che corrisponde alle Sue necessità, non esiti a contattarci all'indirizzo	www.merckmillipore.com/aafwww.merckmillipore.com/support
P	Programmi di manutenzione I programmi di manutenzione Spectroquant® minimizzano i guasti per massimizzare la produttività. Essi includono: • esame delle prestazioni con standard di riferimento; sono compresi certificati dettagliati • manutenzione dello strumento suggerita dal produttore • assistenza telefonica con linea diretta • aggiornamento software gratuito • programma di fornitura dei reagenti	www.merckmillipore.com/water-analytics-service
R	Reso e riciclo dei kit analitici Vedere: Consigli per lo smaltimento dei rifiuti	www.disposal-test-kits.com
	Ricerca online • È possibile effettuare ricerche per nome e codice del prodotto, oppure per parola chiave. • Mentre si digita la stringa di ricerca, compare un elenco a tendina con dei suggerimenti. • Scegliendo un termine dall'elenco si viene indirizzati immediatamente alla pagina corrispondente.	www.merckmillipore.com/test-kitswww.sigma-aldrich.com
	Ricerca e sviluppo • Sviluppiamo regolarmente nuovi kit per soddisfare ogni Sua necessità • Nel caso non riuscisse a trovare il kit o i parametri che Le servono, non esiti a contattarci per ulteriori informazioni	www.merckmillipore.com/support
S	Schede di sicurezza e Certificati d'analisi Digiti il numero di lotto o di catalogo e si procuri la documentazione di cui ha bisogno con un click.	www.merckmillipore.com/msdswww.sigma-aldrich.com/msds
	Servizio Clienti Approfitti di consulenza competente da parte degli specialisti del Servizio Clienti e dell'Assistenza Tecnica locale.	www.merckmillipore.com/supportwww.sigma-aldrich.com/customer-service.html
	Sicurezza del personale Nei limiti del possibile, quando sviluppiamo i nostri kit evitiamo di utilizzare sostanze chimiche nocive come cloroformio, cadmio o benzene. Inoltre, forniamo esaurienti istruzioni per lo smaltimento dei rifiuti.	www.merckmillipore.com/safety
	Spedizione dei prodotti Per la spedizione dei prodotti, ci atteniamo alle rigorose norme internazionali.	www.merckmillipore.com/packaging

Servizi e informazioni

Indirizzi web diretti

S Servizio di smaltimento dei rifiuti

Comodo servizio per uno smaltimento sicuro dei rifiuti chimici secondo le norme locali. Per i dettagli, contattare lo specialista di zona.

Visite e dimostrazioni "in situ"

Per assistere nel Suo laboratorio a presentazioni e dimostrazioni sull'impiego degli strumenti e dei kit analitici, La preghiamo di contattare il Servizio Clienti

- www.merckmillipore.com/support
- www.sigma-aldrich.com/customer-service.html

₩ Webcast e filmati

Guardandoli apprenderà come utilizzare correttamente gli strumenti e le tecniche per la preparazione dei campioni.

- www.merckmillipore.com/webcast_asp_wfa
- www.merckmillipore.com/video_asp_wfa

Webinar

I nostri webinar offrono informazioni più dettagliate sulle analisi di alimenti, acqua e ambientali.

- www.merckmillipore.com/webinar > Analisi e preparazione dei campioni
- www.sigma-aldrich.com/webinars

VISITI IL NOSTRO E-SHOP

Tutti i nostri prodotti per analisi delle acque, degli alimenti e ambientali sono disponibili on-line. Giorno e notte! Per ulteriori dettagli e per acquistare in tutta semplicità, visiti

www.sigma-aldrich.com

24/7

Servizi di assistenza

Indice dei numeri di catalogo

È pronto per procurarsi i prodotti migliori per le analisi delle acque, degli alimenti o ambientali? Usi quest'indice per trovare i numeri di catalogo, quindi visiti il nostro sito web per effettuare un ordine. Le auguriamo acquisti felici e analisi ben riuscite.

> www.sigma-aldrich.com

N° Cat.	Pagina										
100		100885	76	108161	90	109749	44	111		114434	128
100049	62	100961	68	108163	90	109751	43	111103	130	114438	130
100086	62	101		108164	90	109752	43	111104	130	114441	130
100087	62	101632	72	108165	90	109769	44	111106	130	114449	132
100088	62	101744	74	108166	90	109772	66	111107	134	114500	70
100089	68	101745	62	108203	130	109773	66	111109	128	114537	60
100474	70	101746	76	108312	130	109779	44	111110	128	114540	64
100475	70	101747	60	109		110		111117	128	114541	64
100594	58	101749	58	109450	153	110001	144	111122	130	114542	72
100595	62	101758	62	109486	152	110002	144	111131	132	114543	70
100597	62	101764	76	109489	152	110003	144	111132	130	114544	58
100598	62	101787	76	109502	153	110004	144	111136	130	114546	70
100599	62	101796	64	109511	146	110006	144	111138	132	114547	72
100602	62	101797	64	109512	146	110007	146	111142	130	114548	76
100605	60	101804	64	109514	152	110011	146	111143	130	114549	68
100606	70	101807	64	109521	152	110012	144	111148	134	114551	68
100607	74	101809	58	109525	152	110013	146	111151	137	114552	68
100608	60	101812	76	109526	152	110015	144	111152	134	114553	74
100609	72	101813	76	109527	152	110019	146	111157	130	114554	72
100613	60	101842	72	109531	153	110020	144	111160	128	114555	64
100614	72	101846	70	109532	153	110022	146	111169	132	114556	72
100615	74	102		109533	153	110023	144	111170	132	114558	58
100616	70	102531	62	109535	153	110024	144	111174	130	114559	58
100617	76	102532	76	109540	153	110025	144	111860	146	114560	64
100673	70	102537	76	109541	153	110028	146	114		114561	62
100675	60	102552	76	109542	153	110029	144	114394	76	114562	74
100677	60	104		109543	153	110032	144	114400	128	114563	72
100678	60	104660	90	109545	153	110036	144	114401	130	114564	76
100680	60	107		109555	152	110044	144	114402	130	114566	78
100683	58	107302	118	109556	152	110046	144	114403	130	114598	68
100687	60	108		109557	152	110047	144	114404	132	114622	76
100688	60	108017	132	109558	152	110049	144	114406	132	114651	134
100718	60	108018	132	109560	152	110057	146	114408	132	114652	130
100784	44	108023	130	109562	152	110077	146	114410	134	114653	130
100787	44	108024	128	109564	152	110079	144	114411	134	114657	128
100796	68	108025	132	109565	152	110080	144	114412	134	114658	132
100798	70	108027	134	109568	152	110081	146	114413	128	114660	130
100809	68	108028	132	109569	152	110083	144	114414	134	114661	132
100815	70	108033	130	109570	152	110084	144	114416	134	114662	134
100816	70	108038	134	109584	153	110092	146	114417	128	114663	134
100822	68	108039	130	109632	153	110232	152	114418	134	114667	44
100826	60	108040	130	109701	62	110337	146	114420	132	114669	134
100856	68	108043	134	109711	70	110428	144	114421	130	114670	128
100857	76	108046	132	109713	72	110648	144	114423	128	114675	99
100858	62	108047	130	109717	74	110653	136	114424	134	114676	98
100860	72	108048	130	109734	44	110654	136	114428	128	114678	70
100861	78	108160	90	109748	43	110962	152	114429	128	114683	68

									www.se	rvice-test-	·Kits.com
N° Cat.	Pagina	N° Cat.	Pagina	N° Cat.	Pagina	N° Cat.	Pagina	N° Cat.	Pagina	N° Cat.	Pagina
114687	51	114846	132	116993	120	118458	130	125038	105	133012	104
114688	51	114848	70	116995	120	118459	134	125039	105	133013	104
114689	100	114878	78	116996	120	118460	132	125040	105	133014	104
114690	64	114879	78	116997	120	118461	132	125041	105	133018	104
114691	64	114895	64	117		118462	132	125042	105	133019	104
114693	89	114896	68	117046	144	118463	132	125043	104	133020	104
114694	74	114897	64	117048	66	118465	132	125044	104	133021	105
114695	99	114901	136	117058	64	118466	134	125045	104	133022	105
114696	100	114902	136	117059	64	118467	134	125046	104	133023	105
114724	44	114942	72	117179	128	118468	134	125047	104	133024	105
114729	70	114944	44	117828	146	118700	101	125048	104	171	103
114730	64	114946	44	117866	144	118701	101	125049	105	171200	53
114731	74	114947	44	117917	144	118750	80	125050	105	171201	53
114738	100	114962	89	117920	144	118751	80	125051	105	171201	53
114739	58	114963	51	117922	144	118752	80	125052	105	171202	53
114750	128	114964	44	117924	144	118753	80	125052	105	171203	53
114752	58	114976	128	117925	144	118754	128	132	103	173	33
114753	130	114977	128	117927	144	118755	134	132225	104	173015	80
114756	130	114977	128	117927	144	118756	128	132226	104	173015	38
114758	68	114978	128	117934	120	118757	128	132227	104	173017	38
		114979 115	120			118758	134	132227			
114759 114761	130	115	6.4	117945 117952	120	118759			104	173018 173020	38 44
	68		64		120		134	132229	104		
114763	60	116	120	117953	146	118771	132	132230	104	173500	78
114764	72	116124	120	117956	120	118773	134	132231	104	173501	78
114765	134	116125	120	117961	120	118789	74	132233	104	173502	44
114767	74	116127	120	117963	120	119	74	132234	104	173503	89
114768	132	116128	120	117968	120	119251	74	132235	104	173630	42
114770	70	116136	120	117976	144	119253	58	132236	104	173632	41
114773	72	116141	120	117985	146	119254	80	132237	104	173633	44
114774	134	116720	120	117988	136	119256	80	132238	104	173634	44
114776	72	116730	120	117989	136	119257	80	132239	104	173635	41
114777	134	116731	120	118		119258	80	132240	105	173650	44
114779	76	116732	120	118322	130	119301	89	132241	105	174	
114780	134	116892	120	118323	134	119302	89	132242	105	174010	44
114782	134	116894	120	118324	112	120		132243	105	174011	44
114783	132	116896	120	118325	112	120097	44	132244	105	174064	44
114785	72	116898	120	118326	128	120347	44	132245	105		
114791	76	116899	120	118328	113	120497	44	132246	105		
114792	134	116953	118	118329	113	125		132247	105		
114794	76	116954	118	118331	112	125022	104	132248	105		
114798	128	116957	118	118332	113	125023	104	132249	105		
114801	128	116970	118	118335	113	125024	104	132251	105		
114803	128	116971	120	118342	113	125025	104	132252	105		
114815	62	116973	120	118343	113	125026	104	132253	105		
114821	74	116974	120	118349	113	125027	104	133			
114825	58	116975	120	118381	113	125028	104	133002	104		
114826	128	116976	120	118386	128	125029	104	133003	105		
114831	60	116977	120	118387	132	125030	104	133004	105		
114832	78	116978	120	118388	132	125031	104	133005	104		
114833	74	116981	120	118389	134	125032	104	133006	104		
114834	62	116982	120	118394	132	125033	104	133007	104		
114839	60	116983	120	118452	128	125034	104	133008	104		
114842	70	116987	120	118455	128	125035	104	133009	104		
114843	134	116989	120	118456	130	125036	105	133010	104		
114845	134	116992	120	118457	128	125037	105	133011	104		

NATURAL-MENTE LA SCELTA MIGLIORE

In Merck sviluppiamo prodotti che non solo consentono il lavoro dei nostri Clienti, ma che anche rispettano il nostro pianeta. Così, mentre miglioriamo costantemente kit, strumenti ed accessori per offrire una precisione ancora maggiore nelle analisi, continuiamo anche a ridurre le sostanze chimiche pericolose dei nostri prodotti, per proteggere gli utilizzatori e l'ambiente. Naturalmente, ciò li rende la scelta migliore per tutti.

