

Méthodes générales de test et d'analyse des produits alimentaires

Solutions pour les méthodes d'analyse instrumentale réglementée utilisant la SAA, la CPG, l'HPLC, l'ICP, le titrage KF et la CCM 01/2016

Sommaire

Index des applications	3
Introduction	4-7
- Définition des aliments et des boissons	
(apports énergétiques solides et liquides)	4
- Le Lait	5
- La viande	6
- Analyses alimentaires	6-7
Méthodes instrumentales normalisées	8-42
Techniques instrumentales utilisées dans les méthodes normalisées	43-69
Informations réglementaires	70-79

Index des applications

Matrice/échantillon	Paramètre	Technique	Norme			
Mesurage du pH dans la viande et les produits à base de viande						
Viande (longe de porc)	рН	pH-métrie/non destructive pH-	ISO 2917:1999			
Viande (saucisse)	рН	métrie/destructive	ISO 2917:1999			
N	lesurage du pH dan	s les produits dériv	rés des fruits et légumes			
Jus de pomme	pH	pH-métrie	ISO 1842:1991			
Jus d'orange	рН	pH-métrie	ISO 1842:1991			
Confiture d'abricot	рН	pH-métrie	ISO 1842:1991			
Confiture de carottes	pH	pH-métrie	ISO 1842:1991			
Te	neur en chlorures d	e la viande et des ¡	oroduits à base de viand	e		
Viande & produits à base						
de viande	Chlorures	Titrage	ISO 1841-1:1996			
Esters méthylic	jues d'acides gras (l	EMAG) dans les co	rps gras d'origine anima	le et végétale		
Huile de tournesol	EMAG*	CPG avec FID	EN ISO 12966-2:2011 EN ISO 12966-4:2015	7 1		
	Détermination du	ı plomb et du cadn	nium dans le poisson			
Poisson	Cadmium, Plomb	SAA/GFAAS	NF EN 14084:2003			
	Dosag	je du déoxynivalén	ol (DON)			
Blé	DON**	HPLC	EN 15791:2009	**Déoxynivalénol		
Teneur en se	l de la viande et de	s produits à base d	e viande avec différente	s méthodes		
Charcuterie	Chlorure de	SAA	EN 15505:2008			
	Sodium	Titrage	ISO 1841-1:1996			
Salami	Chlorure de	SAA	EN 15505:2008			
	sodium	Titrage	ISO 1841-1:1996			
Détermination	on de la teneur en e	eau dans les corps	gras d'origines animale	et végétale		
Huile	Eau	Titrage selon KF/Coulométrie	DIN EN ISO 8534:2008			
Dosage des éléments-traces dans les produits alimentaires						
Viande (Bœuf)	Éléments traces***	ICP-0ES	EN 13805:2002	***Fe, Mg, Ca, Na, K		
Viande (Poulet)	Éléments traces***	ICP-OES	EN 13805:2002	***Fe, Mg, Ca, Na, K		
Lait	Éléments traces***	ICP-0ES	EN 13805:2002	***Fe, Mg, Ca, Na, K		
Détermination des pesticides						
Tomate Pestic	ides	LC-MS/MS	NF EN 15662:2009			

Introduction

Ce recueil traite de l'analyse alimentaire réglementée. Il présente des solutions complètes pour l'analyse instrumentale réglementée en mettant l'accent sur les méthodes générales de test et d'analyse des produits alimentaires.

Toutes les méthodes mises en avant respectent des normes internationales :

ISO (Organisation internationale de normalisation) http://www.iso.org/iso/home.html

DIN (Deutsches Institut für Normung) http://www.din.de/en

CEN (Normes européennes conservées par le Comité européen de normalisation) https://www.cen.eu/

Afin de traiter de l'analyse alimentaire réglementée, comprendre le terme d'aliments est un bon point de départ. Il s'agit donc de toute(s) substances consommée(s) en vue de fournir un apport nutritionnel. Les aliments contiennent des nutriments essentiels, tels que les graisses, les protéines, les vitamines et les minéraux.

Les aliments sont généralement d'origine végétale ou animale, mais certains champignons sont également comestibles. Dans la préparation des aliments fermentés et saumurés (pain au levain, fromage, etc.), des champignons et des bactéries ambiantes sont également utilisés. Des substances inorganiques, telles que le sel et le bicarbonate de sodium sont utilisées pour conserver ou modifier chimiquement un ingrédient, c.-à-d. utilisées comme additifs alimentaires.

Les boissons sont des liquides à boire, excluant généralement l'eau, et pouvant inclure le thé, le café, les liqueurs, la bière, les jus de fruits et les sodas. Les types de sodas les plus importants sont : les boissons prêtes à boire et aromatisées (pratiquement toujours gazeuses), les boissons prêtes à boire contenant des fruits ou des jus de fruits et les boissons destinées à être bues après dilution.

Les aliments peuvent ainsi être sous forme solide (fruits, viande, légumes et mêmes des liquides congelés, autrement dit des glaces) ou liquide (boissons).

- Les boissons énergétiques sont-elles des aliments ou des compléments alimentaires ?
- Quelle est la différence entre une boisson et un complément alimentaire ?
- Quand une glace devient-elle une boisson et à quel stade est-ce un aliment ?

On peut alors se demander pourquoi nous faisons la différence entre aliments (Food) et boissons (Beverage), et en même temps utilisons le terme F&B (Food and Beverage) pour définir un secteur/une industrie qui est spécialisée dans la production d'aliments.

Le lait

Le lait est un liquide qui est produit par les glandes mammaires des mammifères. Il peut être modifié en en retirant une partie de la matière grasse laitière, ou en y ajoutant de la crème, du lait concentré, du lait entier en poudre, du lait écrémé, du lait écrémé concentré ou du lait écrémé en poudre. Le lait peut également être homogénéisé.

Le Codex Alimentarius fournit les définitions suivantes :

- 1. "Le lait est la sécrétion mammaire normale d'animaux de traite obtenue à partir d'une ou de plusieurs traites, sans rien y ajouter ou en soustraire, destinée à la consommation comme lait liquide ou à un traitement ultérieur."
- 2. "Un produit laitier est un produit obtenu à la suite d'un traitement quelconque du lait, qui peut contenir des additifs alimentaires et autres ingrédients fonctionnellement nécessaires au traitement."
- 3. "Un produit laitier composé est un produit dans lequel le lait, les produits laitiers ou les constituants du lait forment une partie essentielle en termes de quantité dans le produit final tel que consommé, à condition que les consistuants non-dérivés du lait ne soient pas destinés à remplacer totalement ou partiellement un quelconque constituant du lait."
- 4. "On entend par **produit laitier reconstitué** le produit obtenu par addition d'eau au produit en poudre ou concentré, en quantité nécessaire pour rétablir le rapport approprié entre l'eau et les matières sèches."
- 5. "On entend par **produit laitier recombiné** le produit obtenu par combinaison de matières grasses laitières et de matières sèches laitières non grasses sous leur forme conservée, avec ou sans adjonction d'eau, pour obtenir la composition du produit laitier approprié."
- 6. "Le terme de "laitier" qualifie les noms, appellations, symboles, images ou autres moyens de désigner le lait et les produits issus du lait ou permet de les suggérer directement ou indirectement."

Seul un produit répondant à la définition 1. ci-dessus peut être appelé "lait". "Si un tel produit est mis en vente en tant que tel, il sera appelé "lait cru" ou désigné par un autre terme approprié, s'il n'y a pas de risque d'erreur ou de confusion pour le consommateur." "Le lait qui a été modifié dans sa composition par l'addition et/ou le retrait de constituants du lait peut être identifié par un nom utilisant le terme "lait", à condition qu'une description claire de la modification à laquelle le lait a été soumis soit placée à proximité immédiate du nom."

L'Inde est le premier producteur mondial de lait ; la Nouvelle-Zélande, les États membres de l'Union européenne, l'Australie et les États-Unis sont les plus grands exportateurs de lait/produits laitiers. La Chine et la Russie sont les premiers importateurs mondiaux de lait et de produits laitiers.

La viande

La viande est définie comme la chair comestible d'un animal, généralement un mammifère ou un oiseau. La chair des poules domestiques est parfois désignée sous le nom de volaille. La chair désigne également la partie comestible de certains végétaux, d'un fruit par exemple.

En gastronomie, la viande rouge est rouge lorsqu'elle est crue et n'est pas de couleur pâle une fois cuite, et la viande blanche est de couleur pâle avant et après cuisson.

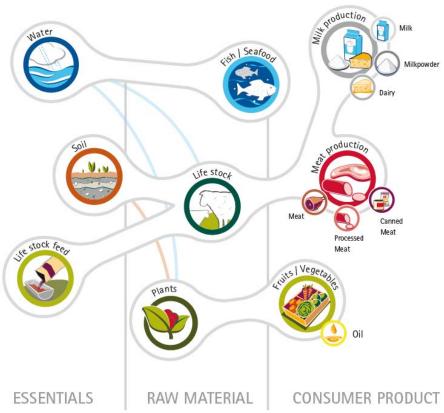
En science, la viande rouge est définie comme la viande qui contient plus de myoglobine qu'une viande blanche, cette dernière étant définie comme une viande non brune issue du poulet (à l'exception des pattes ou cuisses), ou du poisson.

Le porc, par exemple, est une viande rouge selon la définition nutritionnelle et un viande blanche selon la définition gastronomique. *Cela peut être source de confusion.*

Analyses alimentaires

L'analyse instrumentale est le thème principal de ce recueil, mais sur la page suivante, vous trouverez un aperçu qui illustre une vision plus vaste de l'analyse des produits alimentaires, avec une référence au contrôle microbiologique et aux tests rapides. Nous vous encourageons donc à envisager le processus dans son ensemble. En pratique, cela signifie qu'un produit commercial à base de viande transformée (par exemple une saucisse) est affecté non seulement dans son procédé de production, mais également par le sol dans lequel a poussé la nourriture du bétail à l'origine de la viande. Les analyses alimentaires ne concernent donc pas seulement l'analyse instrumentale de produits finis. On pourrait dire par exemple que les analyses environnementales (c.-à-d. la qualité des sols et de l'eau, le contrôle de l'air, etc.) en font partie.

Sur les pages suivantes sont présentées des méthodes d'HPLC et d'UHPLC pour la détection de toxines et de résidus de pesticides (détection par MS), des méthodes de Karl Fischer (KF) pour la détermination de la teneur en eau, la spectroscopie d'absorption atomique (SAA), des méthodes couplées à un plasma inductif (ICP) pour la détermination de la teneur en métaux, des méthodes de CPG pour les esters méthyliques d'acides gras (EMAG) et différents exemples d'analyse par titrage classique.


Des sections séparées présentent les différentes techniques analytiques utilisées, ainsi qu'un aperçu des exigences réglementaires et des différentes législations alimentaires.

Décharge de responsabilité :

"Merck fournit à ses clients des informations et des conseils relatifs aux technologies et aux questions réglementaires en lien avec leurs applications au mieux de ses connaissances et compétences, mais sans obligation ni responsabilité. Les lois et réglementations existantes doivent dans tous les cas être respectées par nos clients. Cela s'applique également au respect des droits de tiers. Nos informations et nos conseils ne dispensent pas nos clients de leur propre responsabilité de vérifier l'adéquation de nos produits avec l'utilisation envisagée." Apura®, Certipur®, Lichropur®, Lichropur®, Lichrosolv®, SupraSolv®, Purospher®, LichroCART® et Suprapur® sont toutes des marques de Merck KGaA, Darmstadt, Allemagne."

Aperçu des analyses alimentaires

	Eau	Sols	Aliments pour animaux	Bétail/Légumes	Procédé de production	Produit fini
Type d'analyse						
Tests rapides	Analyse des eaux usées : DCO N sous différentes formes	Nitrates; phosphore , soufre		Acide ascorbique, sucres, contrôle de la désinfection, nitrates, soufre	Acide ascorbique, sucres, contrôle de la désinfection	Acide lactique dans le lait, pH de la viande, hydroxyméthylfurfural (HMF) dans le miel
Instrumentale	pH, éléments traces, pesticides	Éléments traces, pesticides	Antibiotiques	Pesticides, toxines		Métaux lourds, pesticides, antibiotiques, toxines, teneur en eau, teneur en sel
Micro- biologique	Pour l'eau potable et l'eau de transformation des aliments uniquement : E. coli et coliformes		Analyse des pathogènes et des micro-organismes d'altération par ex. : salmonelles, Listeria, E. coli pathogène, Clostridia, Enterobacteriaceae, levures & moisissures, Aspergillus		Contrôle environnementa l: échantillonnage de l'air, contrôle des surfaces à l'aide de géloses contact et de lames gélosées, tests ATP	Analyse des pathogènes et des micro-organismes d'altération par ex. : salmonelles, Listeria, E. coli pathogène, Clostridia, Enterobacteriaceae, levures et moisissures, Aspergillus

Mesurage du pH dans la viande et les produits à base de viande

ISO 2917:1999

Cette méthode est basée sur la différence de potentiel mesurée entre une électrode de verre et une électrode de référence, qui sont placées dans un extrait d'échantillon de viande ou de produit à base de viande.

Deux procédures sont utilisées en raison de types d'échantillon différents :

- 1. la méthode non destructive pour le mesurage dans la longe de porc
- 2. la méthode destructive pour le mesurage dans une saucisse fermentée

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696)

Dans la norme, il est décrit comment préparer les solutions tampons, toutefois nous proposons des solutions prêtes à l'emploi :

Les solutions Certipur® suivantes peuvent également être proposées avec des spécifications à 20 °C.

Solutions tampons:

- 1. Acide citrique hydroxyde de sodium chlorure d'hydrogène avec traçabilité aux MRS du NIST et du PTB, pH 4,00 (25 °C) Certipur® (Réf. 1.09445)
- 2. Dihydrogénophosphate de potassium dihydrogénophosphate de sodium avec traçabilité aux MRS du NIST et du PTB, pH 7,00 (25 °C) Certipur® (Réf. 1.09407)
- 3. Acide borique chlorure de potassium hydroxyde de sodium avec traçabilité aux MRS du NIST et du PTB, pH 9,00 (25 °C) Certipur® (Réf. 1.09408)

Hydroxyde de sodium en solution c(NaOH) = 1 mol/l (1 N) TitriPUR® (Réact. de la Ph. eur., Reag. USP) (Réf. 1.09137)

Nettoyage:

Éthanol à 96 % EMSURE® (Réact. de la Ph. eur.) (Réf. 1.59010) Éther diéthylique EMSURE® (ACS, ISO, Réact. de la Ph. eur.) (Réf. 1.00921)

Appareillage

- Hachoir rotatif à grande vitesse, capable d'homogénéiser l'échantillon de laboratoire (morceaux ne devant pas excéder 4,0 mm de diamètre)
- pH-mètre, précis à pH 0,01 près
- Électrode combinée (dans laquelle l'électrode indicatrice et l'électrode de référence sont réunies dans un seul obiet)
- Homogénéisateur à tige (capable de fonctionner à une vitesse de rotation de 20000 tr/min)
- Agitateur magnétique

Mesurage du pH dans la viande et les produits à base de viande

L'échantillonnage n'est pas couvert par cette norme, mais ISO 3100-1 indique une méthode recommandée. Il est important de disposer d'échantillons représentatifs et il est suggéré de commencer avec au moins 200 g.

Étalonnage du pH-mètre

Étalonner le pH-mètre selon les instructions du fabricant en utilisant au moins deux solutions tampons, tout en remuant avec l'agitateur magnétique. Si le pH-mètre n'inclut pas de système de correction de la température, la température de la solution tampon doit se trouver dans la fourchette de 20 ± 2 °C.

Méthode non destructive

Percer un trou dans l'échantillon avec un couteau ou une aiguille pointue et insérer l'électrode. Si le pH-mètre n'inclut pas de système de correction de la température, la température de l'échantillon doit se trouver dans la fourchette de 20 ± 2 °C.

Pour le mesurage non destructif, utiliser une électrode de pH à embout pointu. Sélectionner un point représentatif de l'échantillon. S'il est considéré comme utile de connaître les différences de pH en plusieurs point de l'échantillon, répétez le mesurage en divers points.

Méthode destructive

Homogénéiser l'échantillon de laboratoire. S'assurer que la température de l'échantillon ne dépasse pas 25 °C. Homogénéiser une certaine masse d'échantillon préparé dans une solution de chlorure de potassium en excès (10 fois plus) au moyen d'un homogénéisateur à tige. Introduire les électrodes dans l'extrait d'échantillon et régler le système de correction de la température du pH-mètre à la température de l'extrait. Si le pH-mètre n'inclut pas de système de correction de la température, la température de l'échantillon doit se trouver dans la fourchette de 20 ± 2 °C. Tout en remuant avec l'agitateur magnétique, mesurer le pH. Lorsqu'une valeur constante est atteinte, lire le pH directement sur l'instrument.

Conseils:

Remplir un récipient adéquat étanche à l'air d'échantillon homogénéisé. Il est recommandé d'analyser l'échantillon dès que possible, mais toujours dans les 24 h qui suivent son homogénéisation. L'heure exacte de la mesure du pH doit être relevée. Avec la viande fraîche, qui est généralement conservée à des températures comprises entre 0 et 5 °C, il est nécessaire d'utiliser un système de correction de la température.

Résultats (reporter le résultat à l'unité de pH la plus proche, à 0,05 près).

Longe de porc : 5,80 ; 5,75 ; 5,90 Saucisse fermentée : 4,95 ; 5,00 ; 4,95

Mesurage du pH dans les produits dérivés des fruits et légumes

ISO 1842:1991

La méthode est basée sur la différence de potentiel mesurée entre deux électrodes plongées dans le liquide à tester.

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696)

Dans la norme, il est décrit comment préparer les solutions tampons, toutefois nous proposons des solutions prêtes à l'emploi :

Les solutions Certipur® suivantes peuvent également être proposées avec des spécifications à 20 °C.

Solutions tampons:

- 1. Acide citrique hydroxyde de sodium chlorure d'hydrogène avec traçabilité aux MRS du NIST et du PTB, pH 4,00 (25 °C) Certipur® (Réf. 1.09445)
- 2. Dihydrogénophosphate de potassium dihydrogénophosphate de sodium avec traçabilité aux MRS du NIST et du PTB, pH 7,00 (25 °C) Certipur® (Réf. 1.09407)
- 3. Acide borique chlorure de potassium hydroxyde de sodium avec traçabilité aux MRS du NIST et du PTB, pH 9,00 (25 °C) Certipur® (Réf. 1.09408)

Appareillage

- pH-mètre, précis à pH 0,01 près
- Électrode combinée (dans laquelle l'électrode indicatrice et l'électrode de référence sont réunies dans un seul objet)

Mesurage du pH dans les produits dérivés des fruits et légumes

Étalonnage du pH-mètre

Étalonner le pH-mètre selon les instructions du fabricant en utilisant au moins deux solutions tampons, tout en remuant avec l'agitateur magnétique. Si le pH-mètre n'inclut pas de système de correction de la température, la température de la solution tampon doit se trouver dans la fourchette de 20 ± 2 °C.

Préparation de l'échantillon

- Produits liquides : mélanger l'échantillon soigneusement jusqu'à ce qu'il soit homogène.
- Produits épais ou semi-épais : mélanger une partie de l'échantillon et le moudre à l'aide d'un mixeur ou d'un mortier. Si le produit obtenu est encore trop épais, ajouter une masse égale d'eau distillée et bien mélanger.

Prise d'essai

Utiliser comme prise d'essai un volume de l'échantillon préparé suffisant pour pouvoir immerger les électrodes, selon l'appareillage utilisé.

Détermination

Introduire les électrodes dans la prise d'essai et régler le système de correction de la température du pH-mètre à la température de mesurage.

Effectuer la détermination en utilisant la procédure adaptée au pH-mètre utilisé. Lorsqu'une valeur constante est atteinte, lire le pH directement, à au moins 0,05 unité de pH près. Effectuer deux déterminations sur deux prises d'essai séparées.

Expression des résultats

Prendre comme résultat la moyenne arithmétique des résultats des deux déterminations. Reporter les résultats à au moins 0,05 unité de pH près.

Valeurs de pH des échantillons analysés :

Jus de pomme : 3,70 et 3,70

Jus d'orange : 3,99 et 3,99

Confiture d'abricot : 3,46 et 3,47

Confiture de carottes : 4,60 et 4,59

Moyenne : 3,70

Moyenne : 3,70

Moyenne : 3,47

Moyenne : 4,60

Teneur en chlorures de la viande et des produits à base de viande

ISO 1841-1:1996

La méthode utilise l'extraction d'une prise d'essai à l'eau chaude et la précipitation de protéines. Après filtration et acidification, du nitrate d'argent en solution en excès est ajouté à l'extrait, et le titrage de l'excès est effectué avec du thiocyanate de potassium en solution.

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696)

Eau, distillée et exempte d'halogènes pour la chromatographie LiChrosolv® (Réf. 1.15333) Nitrobenzène (ACS Reagent) \geq 99,0 % (Réf. 8.06770) Acide nitrique Suprapur®, c(HNO3) = 4 mol/l (Réf. 1.00441)

Kit de clarification de Carrez, coffret de réactifs pour la préparation d'échantillons en analyse alimentaire, concentré 5 fois (Réf. 1.10537) (Le Kit de clarification de Carrez prêt à l'emploi peut accélérer les analyses)

Nitrate d'argent en solution (Réact. de la Ph. eur., Reag. USP) $c(AgNO_3) = 0.1 \text{ mol/l } (0.1 \text{ N}) \text{ TitriPUR}^{\oplus}$ (Réf. 1.09081)

Thiocyanate de potassium EMPLURA® (Réf. 1.05124)
Sulfate d'ammonium et de fer(III) EMSURE® (ACS, ISO, Réact. de la Ph. eur.) (Réf. 1.03776)

Dissoudre dans de l'eau environ 9,7 g de thiocyanate de potassium.

Transférer quantitativement dans une fiole jaugée de 1000 ml et compléter avec de l'eau jusqu'au trait de jauge.

Standardiser la solution à 0,0001 mol/l près par rapport à une solution de nitrate d'argent en utilisant le sulfate d'ammonium et de fer(III) en solution comme indicateur.

Appareillage:

Balance analytique Équipement d'homogénéisation Fiole jaugée d'une capacité de 200 ml Fiole à fond conique d'une capacité de 250 ml Burette d'une capacité de 50 ml Bain d'eau bouillante

Teneur en chlorures de la viande et des produits à base de viande

ISO 1841-1:1996

Procédure:

Peser environ 10 g d'échantillon (à 0,001 g près) et les transférer quantitativement dans une fiole à fond conique (appelés "prise d'essai")

Déprotéination (élimination des protéines de l'échantillon)

- 1. Ajouter 100 ml d'eau chaude à la prise d'essai.
- 2. Faire chauffer la fiole et son contenu pendant 15 minutes dans le bain d'eau bouillante.
- 3. Toutes les 3-5 minutes, agiter le contenu de la fiole.
- 4. Laisser la fiole et son contenu refroidir à température ambiante et ajouter 2 ml de solution de Carrez I et 2 ml de solution de Carrez II. Mélanger soigneusement après chaque ajout.

Laisser la fiole reposer pendant 30 minutes à température ambiante.

Transférer quantitativement le contenu dans une fiole jaugée de 200 ml et compléter jusqu'au trait de jauge avec de l'eau. Mélanger le contenu et filtrer à travers un papier filtre plissé.

Détermination:

Transférer 20 ml du filtrat dans une fiole à fond conique et ajouter 5 ml d'acide nitrique dilué et 1 ml de la solution de sulfate d'ammonium et de fer(III) comme indicateur. Transférer 20 ml de solution de nitrate d'argent dans la fiole à fond conique, puis ajouter 3 ml de nitrobenzène et mélanger soigneusement. Agiter vigoureusement pour coaguler le précipité. Titrer le contenu de la fiole à fond conique avec du thiocyanate de potassium jusqu'à l'apparition d'une coloration rose persistante. Relever le volume de solution de thiocyanate de potassium requis, à 0,05 ml près.

Essai à blanc : effectuer un essai à blanc en utilisant le même volume de solution de nitrate d'argent.

Calcul: Teneur en chlorures = 58,44 x (V2-V1)/m x C

V1 : est le volume en millilitres de solution de thiocyanate de potassium utilisé lors de la détermination

V2 : est le volume en millilitres de solution de thiocyanate de potassium utilisé lors de l'essai à blanc

m : est la masse, en grammes de la prise d'essai

C : est la concentration de la solution de thiocyanate de potassium en moles par litre

Calcul dans le cas de l'échantillon analysé (2015/34018) V1 = 16.75; V2 = 19.90; M = 10.112 et C = 0.1

Teneur en chlorures=1,82 %

(Astuces : pour calculer la teneur en sel :

Teneur en chlorures x 1,65 = Teneur en sel = 3,00 %)

Esters méthyliques d'acides gras (EMAG) dans les corps gras d'origines animale et végétale

EN ISO 12966-2:2011 et EN ISO 12966-4:2015

La méthode est basée sur le fait que des esters méthyliques sont formés par transméthylation avec une solution méthanolique d'hydroxyde de potassium. À l'aide de la chromatographie en phase gazeuse, les esters méthyliques d'acides gras (EMAG) sont séparés sur une phase stationnaire hautement polaire en fonction de leur longueur de chaîne, de leur degré de saturation/d'insaturation et selon la configuration et la position des doubles liaisons.

Les normes référencées décrivent la façon de travailler et ci-dessous, vous trouverez les produits adéquats :

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696)

Eau, distillée et exempte d'halogènes pour la chromatographie LiChrosolv® (Réf. 1.15333) Méthanol pour la chromatographie en phase gazeuse ECD et FID SupraSolv® (Réf. 1.06011) Hydrogénosulfate de sodium monohydraté, pour l'analyse, EMSURE® (Réf. 1.06352) Isooctane pour la chromatographie en phase gazeuse ECD et FID SupraSolv® (Réf. 1.15440) Hydroxyde de potassium, pastilles, pour l'analyse EMSURE® (Réf. 1.05033)

Étalons EMAG

Appareillage:

Tubes à essai à bouchon à vis, 10 ml Flacons à échantillon en verre Fioles jaugées, capacités de 50 ml et 100 ml

Chromatographe en phase gazeuse avec FID, équipé d'une :

Colonne de CPG capillaire: SLB®-IL60; L × D.I. 60 m × 0,32 mm, film 0,26 µm

Conditions expérimentales :

Gaz vecteur : hélium, 2,2 ml/min ; gaz de flamme : hydrogène et air ; gaz vecteur : azote

Température de l'injecteur : 250 °C Température du détecteur (FID) : 300 °C

Température du four : Cf. Tableau

Volume d'injection: 1 μl

Durée (min)	Température (°C)
0-2	80
2-152	80-230 (1 °C/min)
152-162	230

Esters méthyliques d'acides gras (EMAG) dans les corps gras d'origines animale et végétale

EN ISO 12966-2:2011 et EN ISO 12966-4:2015

Procédure : (Échantillon : Huile de tournesol à haute teneur en acide oléique)

1. Préparation des esters méthyliques d'acides gras

Pipeter 60 µl de l'échantillon à tester dans un tube à essai à bouchon à vis de 10 ml. Ajouter 5 ml d'isooctane et agiter au vortex.

Ajouter 400 µl de solution d'hydroxyde de potassium à 2 mol/l, mettre immédiatement le bouchon, visser et agiter vigoureusement pendant 1 minute. La solution devient claire et peu de temps après redevient trouble à mesure que le glycérol se sépare. Laisser reposer pendant environ 2 minutes. Ajouter environ 1 q d'hydrogénosulfate de sodium et agiter brièvement. Prélever la couche d'isooctane et transférer dans un flacon à échantillon. La solution d'isooctane convient aux analyses utilisant la CPG.

2. Calcul

Les différents EMAG sont identifiés par leurs temps de rétention et par comparaison avec des étalons de référence EMAG. Les pics non identifiés ne doivent pas être inclus dans la somme des surfaces des pics lors du calcul de la composition en acides gras, à moins qu'il ait été confirmé qu'il s'agit bien d'acides gras. Il est également possible de résumer les pics inconnus de la façon suivante.

$fSEMAG = SEMAG/\Sigma S \times 100 \text{ où}$:

fSEMAG: la fraction de surface d'esters méthyliques d'acides gras individuels SEMAG : est la surface des esters méthyliques d'acides gras individuels

 ΣS : est la somme des surfaces de tous les pics de tous les esters méthyliques d'acides gras individuels.

Résultats:

EMAG	Temps de rétention (min)	%
Palmitate de méthyle	68,4	4,10
Palmitoléate de méthyle	70,8	0,15
Octadécanoate de méthyle	82,7	2,94
Ester méthylique d'acide cis-9-oléique	84,6	83,5
Linoléate de méthyle	88,2	5,95
Ester méthylique d'acide gamma-linolénique	92,8	0,11
cis-11-Eicosénoate de méthyle	95,6	0,42
Linolénate de méthyle	97,3	0,30
(Ester méthylique?) d'acide cis-11,14,17-		
eicosatriénoïque	107,8	0,97
cis-5,8,11,14,17-Eicosapentaenoate de méthyle	119,1	0,33
Non identifié		1,21
Somme		100,00

NF EN 14084:2003

La méthode d'analyse est appliquée à des échantillons qui sont digérés dans des récipients clos, en utilisant de l'acide nitrique et un four à micro-ondes. La solution produite est diluée avec de l'eau. Les teneurs en plomb et en cadmium sont ensuite déterminées par spectrométrie d'absorption atomique en four de graphite (GFAAS) avec modificateur de matrice.

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696). N'utiliser que des réactifs/de l'eau avec un niveau de contamination élémentaire suffisamment faible pour ne pas affecter les résultats.

Eau LiChrosolv® (Réf. 1.15333)
Acide nitrique à 65 % Suprapur® (Réf. 1.00441)
Nitrate de magnésium hexahydraté 99,99 % Suprapur® (Réf. 1.05855)

Plomb (1000 mg/l Pb dans du HNO3 à 0,5 mol/l) avec traçabilité aux MRS du NIST Certipur® (Réf. 1.19776) Cadmium (1000 mg/l Cd dans du HNO3 à 0,5 mol/l) avec traçabilité aux MRS du NIST Certipur® (Réf. 1.19777)

Appareillage:

Broyeur de laboratoire (par ex. un broyeur à couteaux)
Four à micro-ondes de laboratoire
Spectromètre d'absorption atomique
Tubes de graphite
Lampes spécifiques d'un élément

NF EN 14084:2003

Procédure:

1. Homogénéiser l'échantillon dans un broyeur de laboratoire. Suggestion : dans certains cas, il peut être nécessaire de procéder au séchage de l'échantillon d'une façon qui n'affecte pas les teneurs en éléments, par ex. par lyophilisation.

2. Préparation de l'échantillon

- Peser 0,5-1,5 q d'échantillon dans un récipient.
- Ajouter 5,0 ml d'acide nitrique. Après 30 minutes, ajouter 5,0 ml d'eau distillée et mélanger doucement.
- Laisser prédigérer les échantillons en laissant les récipients ouverts pendant un minimum de 15 minutes avant de les fermer hermétiquement et de passer au programme de chauffage.

Le programme du four inclura typiquement une étape à faible puissance avec augmentation de la température pendant quelques minutes, suivie d'une ou plusieurs étapes à une puissance supérieure. Une augmentation progressive entre les étapes sélectionnées est recommandée afin d'éviter les pics de pression soudains qui se produisent à l'intérieur des récipients sous pression.

Suggestion : les échantillons avec une teneur en carbone élevée (par ex. les sucres ou les graisses) peuvent provoquer des pics de pression soudains au cours du processus. Laisser ces échantillons prédigérer en les laissant reposer une nuit.

3. Programme de chauffage au micro-ondes

Étape	Durée (min)	Température (°C)
1	20	Jusqu'à 200 °C
2	20-30	200 °C
3	30 et plus	Refroidissement

Suggestion : lors de la digestion d'échantillons inconnus, faire attention car une trop grande quantité d'échantillon risque de rompre la membrane de sécurité du récipient de digestion. En particulier, les échantillons avec une teneur en carbone élevée (par ex. les sucres et les graisses) peuvent provoquer des pics de pression soudains au cours du processus. Dans tous les cas, la prise d'échantillon doit être strictement conforme aux recommandations du fabricant.

NF EN 14084:2003

4. Mesure avec la technique du four de graphite

La technique du four de graphite est requise pour la détermination du plomb et du cadmium. Utiliser des tubes graphite avec revêtement pyrolytique et plateforme intégrée. Programmer le passeur d'échantillons automatique pour qu'il délivre un volume d'échantillon au four de graphite, qui donne une absorbance de fond inférieure à 0,5 UA environ. Paramètres instrumentaux avec un volume d'injection de 20 µl.

Élément	Longueur d'onde (nm)	Correction du bruit de fond	Paramètre	Étape 1	Étape 2	Étape 3	Étape 4
Cd	228,8	Zeeman	Temp. (°C)	110	450	1000	2500
			Rampe (de temp. (°C/s)	10	150	0	0
			Pause (s)	30	20	3	3
Pb	217	Zeeman	Temp. (°C)	120	800	1200	2500
			Rampe (de temp. (°C/s)	10	150	0	0
			Pause (s)	10	20	3	3

5. Calcul

Établir une courbe-étalon et lire la concentration du métal à partir de la courbe. Calculer la teneur (c), en tant que fraction massique de l'élément à déterminer en µg/kg d'échantillon :

c = ((a-b)x V)/m

a : est la concentration dans la solution échantillon en μg/l

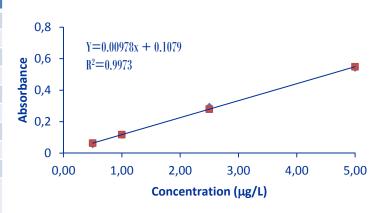
b : est la concentration moyenne dans la solution de blanc réactif en μg/l

V : est le volume de la solution échantillon en ml m : est la masse de l'échantillon en grammes

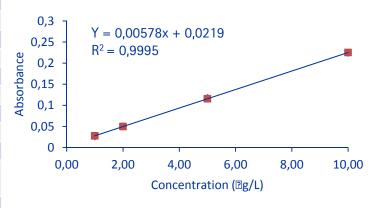
Résultat :

(Dans le cas de l'échantillon 2015/33632

- Poisson - Genre Patagonotothen)


	Plomb	Cadmium
m (g)	1,0115	1,0015
а	0,8493	0,3025
b	-	-
V (ml)	100	100
C (µg/kg)	84	29,9

NF EN 14084:2003


6. Données d'étalonnage - Cadmium (Cd)

ID échantillon	Signal d'abs. (hauteur)	Conc. (μg/l)
Blanc de Cd	0,002	0,0000
Étalon de Cd 1	0,056	0,5000
Étalon de Cd 2	0,116	1,0000
Étalon de Cd 3	0,296	2,5000
Étalon de Cd 4	0,542	5,0000
Blanc de Cd	0,002	0,0005
Blanc de Cd	0,002	0,0065
Cd 33632	0,034	0,3025
Cd Ha94	0,191	1,6413
Étalon de Cd à		
2,5 ppb	0,296	2,4974
Blanc de Cd	0,002	0,0005

7. Données d'étalonnage – Plomb (Pb)

ID échantillon	Signal d'abs. (hauteur)	Conc. (μg/l)
Blanc de Pb	0,003	0,0000
Étalon de Pb 1	0,026	1,0000
Étalon de Pb 2	0,050	2,0000
Étalon de Pb 3	0,118	5,0000
Étalon de Pb 4	0,224	10,0000
Blanc de Pb	0,003	0,0022
Blanc de Pb	0,002	-0,0218
Pb 33632	0,022	0,8493
Pb Ha94	0,036	1,4433
Étalon de P6 à		
25,0 ppb	0,122	5,2115
Blanc de Pb	0,002	-0,0524

Le Pb Ha94 et le Cd Ha94 sont des matériaux de référence.

EN 15791:2009

Le déoxynivalénol (DON) est extrait de l'échantillon en utilisant de l'eau. L'extrait aqueux est purifié sur une colonne d'immuno-affinité afin de retirer les impuretés provenant de l'échantillon. Ensuite, le DON est déterminé quantitativement par HPLC avec détection U.V.

La norme EN décrit la procédure complète et ci-dessous, vous pourrez trouver les produits adéquats au sein de notre offre :

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire).

Méthanol de qualité gradient LiChrosolv® (Réact. de la Ph. eur.) (Réf. 1.06007) Eau LiChrosolv® (Réf. 1.15333)

Étalon analytique de Déoxynivalénol (DON)

Solution d'étalonnage du DON : 0,025 ; 0,05 ; 0,1 ; 0,2 ; 0,5 ; 1,0 et 2,5 μg/ml

Appareillage:

Balance analytique
Homogénéiseur
Agitateur de laboratoire
Agitateur Vortex
Flacons à bouchon à vis, avec des volumes de 500 ml
Entonnoirs
Papiers filtres
Fioles jaugées
Évaporateur sous flux d'air ou d'azote

Colonnes d'immunoaffinité pour la purification du DON

Un système d'HPLC équipé de :

Colonne analytique : Purospher® STAR RP-18 Endcapped (5 μm), Hibar®, 125 x 4 mm (Réf. 1.50036) Équipée d'une précolonne LiChroCART® 4-4 Purospher® STAR RP-18 Endcapped (5 μm) (Réf. 1.50250)

EN 15791:2009

1. Préparation de l'échantillon :

- les échantillons doivent être finement moulus et soigneusement mixés à l'aide d'un broyeur. Nous avons utilisé du blé (N° d'identification 2015/B/4586) comme matrice d'échantillon

2. Extraction de l'échantillon

Peser une prise d'essai de 25,0 g dans un flacon à bouchon à vis de 500 ml.

Ajouter 200 ml d'eau désionisée, remettre le bouchon et agiter pendant 1 heure avec un agitateur magnétique.

Préparer un entonnoir avec du papier filtre.

Filtrer l'échantillon extrait dans un flacon à bouchon à vis propre de 500 ml.

Conseils : il arrive que la filtration prenne beaucoup de temps. Elle peut être accélérée avec l'utilisation des filtres papier de deux tailles de pores différentes.

3. Purification sur colonne d'immuno-affinité

Fixer un réservoir à une colonne d'immuno-affinité. Transférer 2,0 ml d'extrait filtré dans le réservoir. Laisser la solution passer lentement à travers la colonne, par gravité, à la vitesse de 1-2 goutte(s). Une fois tout l'extrait entièrement passé à travers la colonne d'immuno-affinité, passer 5 ml d'eau désionisée à travers la colonne. Retirer le liquide résiduel en faisant passer de l'azote ou de l'air à travers la colonne pendant environ 5 secondes. Jeter tout l'éluat à ce stade de la procédure de purification.

Conseils : la capacité de la colonne d'immuno-affinité utilisée doit être vérifiée régulièrement. La colonne aura une capacité d'au moins 2 500 ng.

Enfin, placer un flacon pour passeur d'échantillons d'HPLC sous la colonne et passer 0,5 ml de méthanol à travers la colonne et, par gravité, récupérer l'éluat. Une fois que les dernières gouttes de méthanol se sont écoulées à travers la colonne, laisser le méthanol agir dans la colonne pendant environ 1 minute. Puis ajouter à nouveau 1 ml de méthanol et récupérer l'éluat. Passer avec précaution de l'azote ou de l'air à travers la colonne afin de récupérer tout filtrat résiduel.

4. Préparation de la solution de test pour l'analyse HPLC

Placer le flacon contenant l'éluat dans un évaporateur et évaporer soigneusement jusqu'à dessiccation sous azote ou air à env. 50 °C. Immédiatement après, refroidir le flacon d'HPLC à température ambiante et reconstituer le résidu avec 1,0 ml de phase mobile d'HPLC. Bien mélanger avec un agitateur vortex pendant au moins 30 s afin de s'assurer que le résidu est complètement dissous à nouveau. En cas de turbidité, filtrer la solution de test avec une unité de filtration pour serinque.

EN 15791:2009

5. Conditions chromatographiques

Colonne: Purospher® STAR RP-18 Endcapped (5 µm), 125 x 4 mm, Hibar® (Réf. 1.50036)

Injection: 100 μl

Détection : Détection UV à 220 nm

Débit : 0,7 ml/min

Phase mobile: Méthanol et eau, 20/80 (v/v)

Température: 25 °C

Diluant: Phase mobile

Échantillon : Blé Perte de charge : 120 bar

6. Calcul

 $w(DON) = c(DON) \times (V(3))/(V(2)) \times (V(1))/(m(s)) où$

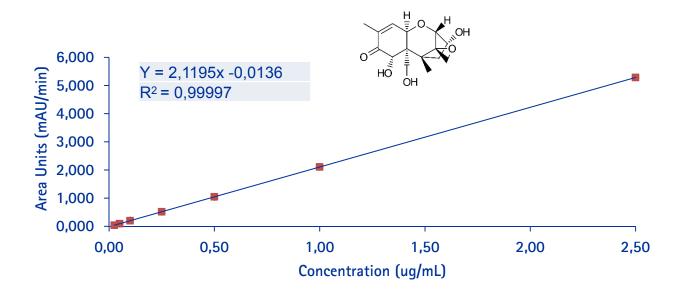
c(DON) : est la concentration massique du DON telle qu'elle a été déterminée par l'étalonnage

V(1): est le volume total de solvant d'extraction (200 ml)

V(2) : est le volume de l'aliquote de l'extrait utilisée pour la purification

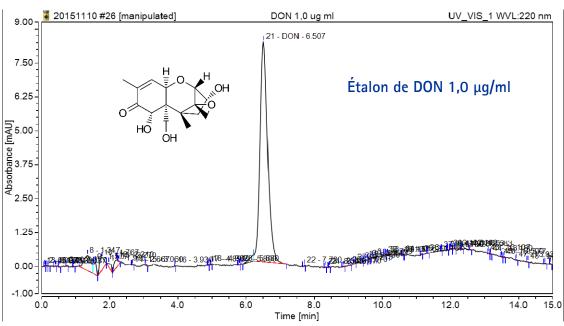
V(3): est le volume total de la solution de test m(s): est la masse de la prise d'essai extraite

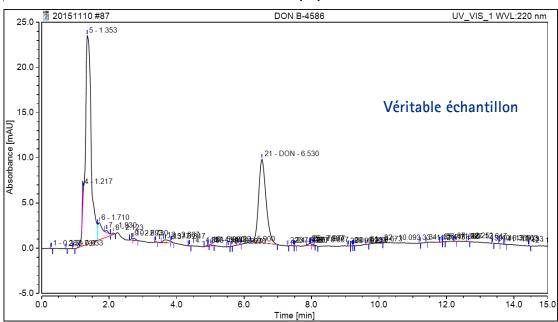
Calcul dans le cas de l'échantillon 2015/B/4586


 $\begin{array}{lllll} c(\text{DON}): & 1,221 \\ V(1): & 200 \text{ ml} \\ V(2): & 2 \text{ ml} \\ V(3): & 1 \text{ ml} \\ m(s): & 25 \text{ g} \\ \end{array}$

w(DON): 4,9 mg/kg

Ainsi, dans l'échantillon analysé, on a pu trouver 4,9 mg/kg de déoxynivalénol (DON)


EN 15791:2009



Résultats de l'étalonnage						
ID	Niveau	Concentration (µg/ml)	Surface (mUA/min)	Hauteur (mUA)		
2,5 μg/ml de DON	04	2,5000	5,286	18,75		
1,0 μg/ml de DON	05	1,0000	2,109	8,107		
0,5 μg/ml de DON	01	0,5000	1,034	4,127		
0,25 μg/ml de DON	02	0,2500	0,509	1,777		
0,1 μg/ml de DON	03	0,1000	0,219	0,961		
0,05 μg/ml de DON	06	0,0500	0,092	0,398		
0,025 μg/ml de DON	07	0,0250	0,034	0,176		

EN 15791:2009

	TR (min)	Largeur à 50 % (min)	Résolution (EP)	Asymétrie (EP)	Plateaux (EP)
I DON	6,5	0,23	5,1	1,2	4285

Mêmes échantillons, des méthodes différentes

Sur les pages suivantes, nous vous proposons des exemples d'analyses de la teneur en sel effectuées sur les mêmes échantillons (un type de charcuterie italienne et un salami), mais avec différentes techniques analytiques. La teneur en sodium est déterminée à l'aide de la spectroscopie d'absorption atomique et la teneur en chlorures est déterminée par titrage.

Dans le cas de la détermination de la valeur nutritionnelle, selon le Règlement (UE) N° 1169/2011, la teneur en sel doit être indiquée sur l'étiquette du produit (auparavant, seul le sodium y était mentionné). Dans cette réglementation, il est préconisé que la teneur en sel soit calculée uniquement à partir de la quantité de sodium (teneur en sel = sodium x 2,5). Il existe d'autres réglementations où les seuils sont indiqués en chlorure de sodium. Savoir quel type de mesure (à base de chlorure ou à base de sodium) doit être appliqué ne va pas de soi.

L'avantage de la méthode à base de chlorure est sa rapidité (bien supérieure) et il n'est pas nécessaire d'investir dans une instrumentation onéreuse. Généralement, tous les laboratoires internes dans l'industrie de la viande utilisent la méthode à base de chlorures. Toutefois, une méthode de titrage est moins exacte, avec son degré d'incertitude supérieur.

Dans le cas du dosage du sodium, vous aurez besoin d'un instrument, mais cela vous fournira une méthode plus précise et vous devrez utiliser cette procédure dans le cas de la détermination de la valeur nutritionnelle.

L'expérience de l'industrie est que, particulièrement dans l'industrie de la viande, plusieurs additifs alimentaires sont utilisés, qui ont une teneur en sodium à côté du sel (par ex., le nitrite de sodium). Dans ce cas, la teneur en sel basée sur le sodium est généralement supérieure à la teneur en sel basée sur les chlorures. Cette dernière affirmation est vérifiée dans cet exemple ; dans lequel une différence de 0,22 % et 0,14 % de teneur en sel a été déterminée dans des échantillons de charcuterie italienne et de salami, respectivement.

Teneur en chlorures de la viande et des produits à base de viande

ISO 1841-1:1996

La méthode est basée sur l'extraction d'une prise d'essai à l'eau chaude et la précipitation de protéines. Après filtration et acidification, du nitrate d'argent en solution en excès est ajouté à l'extrait, et le titrage de l'excès est effectué avec du thiocyanate de potassium en solution.

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire.

Eau, distillée et exempte d'halogènes pour la chromatographie LiChrosolv® (Réf. 1.15333). *L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696)*

Nitrobenzène, \geq 99,0 % (Réf. 8.06770) Acide nitrique Suprapur®, c(HNO3) = 4 mol/l (Réf. 1.00441)

Kit de clarification de Carrez, coffret de réactifs pour la préparation d'échantillons en analyse alimentaire, concentré 5 fois (Réf. 1.10537) (Le Kit de clarification de Carrez prêt à l'emploi peut accélérer les analyses)

Nitrate d'argent en solution (Réact. de la Ph. eur., Reag. USP) $c(AgNO_3) = 0,1 \text{ mol/l } (0,1 \text{ N}) \text{ TitriPUR}^{\oplus} (Réf. 1.09081)$

Sulfate d'ammonium et de fer(III) EMSURE® (ACS, ISO, Réact. de la Ph. eur.) (Réf. 1.03776) Thiocyanate de potassium, solution volumétrique standard E EMPLURA®, c(KSCN) = 0,1 mol/l (Réf. 1.05124)

Dissoudre dans l'eau environ 9,7 g de thiocyanate de potassium.

Transférer quantitativement dans une fiole jaugée de 1000 ml et compléter avec de l'eau jusqu'au trait de jauge et diluer jusqu'au trait avec de l'eau.

Standardiser la solution à 0,0001 mol/l près par rapport à une solution de nitrate d'argent en utilisant le sulfate d'ammonium et de fer(III) en solution comme indicateur.

Appareillage:

Balance analytique Équipement d'homogénéisation Fiole jaugée d'une capacité de 200 ml Fiole à fond conique d'une capacité de 250 ml Burette d'une capacité de 50 ml Bain d'eau bouillante

Teneur en chlorures de la viande et des produits à base de viande

ISO 1841-1:1996

Procédure:

Peser environ 10 g d'échantillon (à 0,001 g près) et les transférer quantitativement dans une fiole à fond conique (appelés "prise d'essai")

Déprotéination (élimination des protéines de l'échantillon)

- 1. Ajouter 100 ml d'eau chaude à la prise d'essai.
- 2. Faire chauffer la fiole et son contenu pendant 15 minutes dans le bain d'eau bouillante.
- 3. Toutes les 3-5 minutes, agiter le contenu de la fiole.
- 4. Laisser la fiole et son contenu refroidir à température ambiante et ajouter 2 ml de solution Carrez I et 2 ml de solution Carrez II. Mélanger soigneusement après chaque ajout.

Laisser la fiole reposer pendant 30 minutes à température ambiante.

Transférer quantitativement le contenu dans une fiole jaugée de 200 ml et diluer jusqu'au trait de jauge avec de l'eau. Mélanger le contenu et filtrer à travers un papier filtre plissé.

Détermination:

Transférer 20 ml du filtrat dans une fiole à fond conique et ajouter 5 ml de l'acide nitrique dilué et 1 ml de la solution de sulfate d'ammonium et de fer(III) comme indicateur.

Transférer 20 ml de solution de nitrate d'argent dans la fiole à fond conique, puis ajouter 3 ml de nitrobenzène et mélanger soigneusement. Agiter vigoureusement pour coaguler le précipité.

Titrer le contenu de la fiole à fond conique avec du thiocyanate de potassium jusqu'à l'apparition d'une coloration rose persistante. Relever le volume de solution de thiocyanate de potassium requis, à 0,05 ml près.

Essai à blanc : effectuer un essai à blanc en utilisant le même volume de solution de nitrate d'argent.

Calcul:

Teneur en chlorures = $58,44 \times (V2-V1)/m \times C$

V1 : est le volume en millilitres de solution de thiocyanate de potassium utilisé lors de la détermination

V2 : est le volume en millilitres de solution de thiocyanate de potassium utilisé lors de l'essai à blanc

m : est la masse, en grammes de la prise d'essai

C : est la concentration de la solution de thiocyanate de potassium en moles par litre (I).

Teneur en chlorures de la viande et des produits à base de viande

ISO 1841-1:1996

Échantillons:

Nº ident. échantillon 2015/P/20298 (charcuterie italienne)

Nº ident. échantillon 2015/36814 (salami)

Résultats:

Teneur en chlorures = $58,44 \times (V2-V1)/m \times C$ Teneur en sel = Teneur en chlorures $\times 1,65$

	Échantillon 2015/P/20298 (charcuterie)	Échantillon 2015/36814 (salami)
V1	18,4	15,7
V2	19,9	19,9
m	10,0514	10,0597
С	0,1	0,1
Teneur en chlorures (%)	0,87	2,43
Teneur en sel (%)	1,43	4,01

Dosage du sodium dans la viande

EN 15505:2008

L'échantillon est digéré dans un récipient clos, en utilisant de l'acide nitrique et un four à microondes. La solution produite est diluée avec de l'eau et la teneur en sodium est déterminée par spectrométrie d'absorption atomique à émission de flamme en utilisant un modificateur de matrice.

Réactifs (utiliser uniquement des qualités analytiques reconnues, sauf indication contraire.)

N'utiliser que des réactifs/de l'eau avec un niveau de contamination élémentaire suffisamment faible pour ne pas affecter les résultats.

Eau LiChrosolv® (Réf. 1.15333)

L'eau doit être conforme au moins au Grade 3 selon la norme ISO 3696

Acide nitrique à 65 % Suprapur® (Réf. 1.00441)

Sodium (1000 mg/l Na dans du HNO_3 à 0,5 mol/l) avec traçabilité jusqu'au matériau de référence standard (MRS) du NIST Certipur® (Réf. 1.70238)

Chlorure de césium 99,995 % Suprapur® (Réf. 1.02039)

Appareillage:

(Toute la verrerie et tout le matériel en plastique doivent être soigneusement nettoyés et rincés pour éviter toute contamination croisée.

La méthode de nettoyage exacte est décrite dans la norme EN 13804.)

Broyeur de laboratoire (par ex. un broyeur à couteaux) Four à micro-ondes de laboratoire Spectromètre d'absorption atomique

Lampes spécifiques d'un élément :

Pour l'élément sodium, une lampe spécifique avec une longueur d'onde de 589,0 nm est employée. (Astuces : le sodium peut être mesuré avec la SAA en mode émission.)

Acétylène de qualité appropriée.

Air

Dosage du sodium dans la viande

EN 15505:2008

Procédure:

1. Homogénéiser l'échantillon dans un broyeur de laboratoire.

Suggestion : dans certains cas, il peut être nécessaire de procéder au séchage de l'échantillon d'une façon qui n'affecte pas les teneurs en éléments, par ex. par lyophilisation.

2. Préparation de l'échantillon

- Peser 1,0-2,5 g d'échantillon dans un récipient.
- Ajouter 5,0 ml d'acide nitrique. Après 30 minutes, ajouter 5,0 ml d'eau distillée et mélanger doucement.
- Laisser prédigérer les échantillons en laissant les récipients ouverts pendant un minimum de 15 minutes avant de les fermer hermétiquement et de passer au programme de chauffage.

Astuces : dans le cas d'échantillons avec une teneur élevée en graisses, réduire la prise d'essai à 0,5-1,0 q.

Dans le cas d'échantillons avec une teneur élevée en eau, la prise d'essai peut être augmentée à 2,0-3,0 q.

Les échantillons avec une teneur élevée en carbone (par ex. les sucres ou les graisses) peuvent provoquer des pics de pression soudains au cours du processus. Laisser ces échantillons prédigérer en les laissant reposer une nuit.

3. Programme de chauffage au micro-ondes

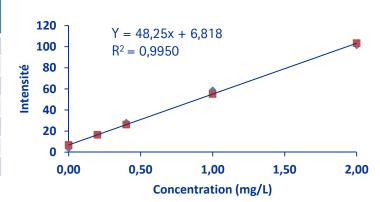
Étape	Durée (min)	Température (°C)
1	0-15	Jusqu'à 190°C
2	15-35	200 °C
3	35 et plus	Refroidissement

4. Dilution

Pipeter un volume adéquat de solution échantillon, ajouter 1 ml de solution de chloride de cesium et diluer (pratiquement jusqu'à 500 ml) ce volume avec de l'acide nitrique à 2,7 %, de façon à ce que la concentration finale de Na se situe dans la gamme de mesure de l'élément.

5. Spectrométrie d'absorption atomique

Avant chaque dosage, régler l'instrument comme indiqué dans le manuel d'utilisation du fabricant. Les réglages exacts de notre instrument figurent dans un fichier séparé.



Dosage du sodium dans la viande

EN 15505:2008

6. Étalonnage - Sodium

ID échantillon	Intensité (Hauteur)	Conc. (mg/l)	
Blanc	3,7	0,0000	
Ét. 1	16,3	0,2000	
Ét. 2	28	0,4000	
Ét. 3	58,6	1,0000	
Ét. 4	101,2	2,0000	
P-20298	50,4	08246	
36814	55,1	0,9231	

7. Calcul

$$c = (a \times V \times F)/m où$$

c: est la fraction de masse du sodium en milligrammes par kilogramme

a : est la concentration de l'élément, en mg/l

V : est le volume de la solution de digestion, en ml F : est le facteur de dilution de la solution de test m : est la masse de l'échantillon initial, en grammes

	Échantillon 2015/P/20298 (charcuterie)	Échantillon 2015/36814 (salami)
a (mg/l)	0,8246	0,9231
V (ml)	500	500
F (dilution)	25	50
m (g)	1,5713	1,3890
Teneur en sodium (%)	0,66	1,66
Teneur en sel (%)	1,65	4,15

Détermination de la teneur en eau de corps gras d'origines animale et végétale

DIN EN ISO 8534:2008

La graisse dissoute est titrée à l'aide d'une solution d'iode et le dioxyde de soufre (SO_2) est oxydé par l'iode en présence d'eau. L'alcool réagit avec le SO_2 et une base azotée (RN) pour former un sel de sulfite d'alkyle intermédiaire, qui est ensuite oxydé par l'iode en un sel de sulfate d'alkyle. Cette réaction d'oxydation consomme l'eau contenue dans l'échantillon.

Réactifs pour l'analyse de Karl Fischer :

(Utiliser uniquement des qualités analytiques reconnues, sauf indication contraire.)

CombiCoulomat frit (Réf. 1.09255.0500)

Réactifs à un composant : tous les réactifs sont contenus dans la solution de titrage

Étalon d'eau (Réf. 1.88052.0010, 1 %)

Appareillage: Cou-Lo Aquamax, par exemple

Détermination:

- 1. Vérifier l'appareillage en mesurant un étalon (injecter 0,5 ml)
- 2. Si le résultat se situe dans la fourchette de ±10 %, il est utilisable.
- 3. Injecter l'échantillon dans le vase de titrage (0,5 ml d'échantillon)
- 4. Relever la masse
- 5. Saisir la masse de l'échantillon dans l'instrument
- 6. L'instrument calculera le résultat final
- 7. Mesurer l'échantillon deux fois, puis prendre la moyenne
- 8. La différence entre les deux mesures doit se situer dans la fourchette des 10 %

Résultats:

	Étalon	Échantillon 1	Échantillon 2
Poids total (g)	3,3128	2,9408	2,9561
Poids de l'échantillon (g)	0,4561	0,4657	0,4786
Résultat (mg/kg)	9767,38	292,53	292,17

EN 13805:2002

Il s'agit d'une méthode pour la détermination du fer, du magnésium, du potassium, du sodium et du calcium dans les produits alimentaires. L'échantillon est minéralisé par une digestion sous pression avec de l'acide nitrique. Dans la solution de digestion obtenue, le fer, le magnésium, le potassium, le sodium et le calcium sont quantifiés par spectrométrie d'émission optique couplée à un plasma inductif (ICP-OES).

Réactifs:

(utiliser uniquement des qualités analytiques reconnues, sauf indication contraire. Les concentrations de fer, de magnésium, de potassium, de sodium et de calcium dans les réactifs et l'eau utilisés seront suffisamment faibles pour ne pas affecter les résultats de la détermination).

```
Eau LiChrosolv® (Réf. 1.15333) 
Acide nitrique à 65 % Suprapur® (Réf. 1.00441) 
Solution mère multi-éléments : Solution étalon multi-éléments pour ICP Certipur®, Solution IV (Réf. 1.11355.0100) 
\rho(Fe) = 1000 \text{ mg/l} \rho(Mg) = 1000 \text{ mg/l} \rho(K) = 1000 \text{ mg/l} \rho(Na) = 1000 \text{ mg/l} \rho(Ca) = 1000 \text{ mg/l}
```

Étalon multi-éléments et solutions d'étalonnage

Les étalons et solutions d'étalonnage sont préparés à partir de la solution mère par dilution dans des fioles jaugées en verre. Pour l'étalonnage, préparer au moins cinq (5) solutions de différentes concentrations. La concentration en acide correspondra à la concentration dans la solution à mesurer. La préparation des solutions ci-dessous est donnée à titre d'exemple.

de $\rho(Fe, Mg, K, Na, Ca) = 0.5 \text{ mg/l}, 1.0 \text{ mg/l}, 2.5 \text{ mg/l}, 5.0 \text{ mg/l}, 10.0 \text{ mg/l} \text{ pour l'ICP-OES}.$

Remplir cinq fioles jaugées de 100 ml avec 10-20 ml d'eau, ajouter 10 ml d'acide nitrique et mélanger. Laisser les solutions refroidir à température ambiante et pipeter exactement 0,05, 0,1, 0,25, 0,5, 1,0 ml de solution mère multi-éléments pour des solutions d'étalonnage de concentrations de masse respectivement de 0,5 mg/l, 1,0 mg/l, 2,5 mg/l, 5,0 mg/l et 10,0 mg/l dans les cinq fioles jaugées de 100 ml. Mélanger les solutions et diluer jusqu'au volume requis avec de l'eau.

Les solutions d'étalonnage décrites ici doivent être considérées comme des exemples. Les concentrations préparées devront être dans la plage de linéarité de l'instrument de mesure. La concentration en acide des solutions d'étalonnage devra correspondre à la concentration en acide de la solution échantillon.

EN 13805:2002

Solution de blanc

La solution de blanc contient de l'eau et de l'acide nitrique en quantités qui correspondent aux concentrations présentes dans la solution à mesurer, par exemple, 10 ml d'acide nitrique dans 100 ml d'eau.

Appareillage

Système de réaction micro-ondes ICP-OES (à visée axiale).

Digestion de l'échantillon

Minéraliser l'échantillon dans une digestion sous pression en conformité avec la norme EN 13805:2002. Les exigences concernant la digestion s'appuient sur les spécifications du fabricant de l'instrument, la réactivité de l'échantillon, la stabilité à la pression maximale du récipient de digestion et la température qu'il est possible d'atteindre.

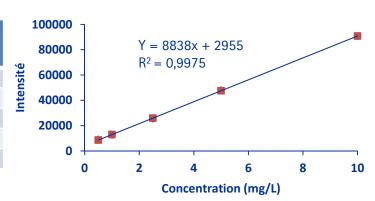
Peser avec précision 0,8-0,9 g d'échantillon dans le récipient de digestion et mélanger avec 5 ml d'acide nitrique et 1 ml d'eau. La solution de digestion obtenue par la digestion sous pression selon la norme peut être utilisée directement ou diluée pour une quantification ultérieure du fer, du magnésium, du potassium, du sodium et du calcium.

Spectrométrie d'émission optique couplée à un plasma inductif (ICP-OES)

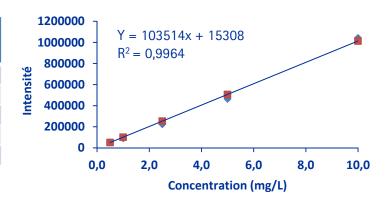
Démarrer l'appareil et le laisser se stabiliser, puis l'optimiser selon les spécifications du fabricant et débuter les mesures. Utiliser la solution de blanc pour régler le zéro de l'appareil. Passer les solutions d'étalonnage par ordre de concentration croissant dans le plasma et mesurer l'émission de l'élément à déterminer.

Évaluations

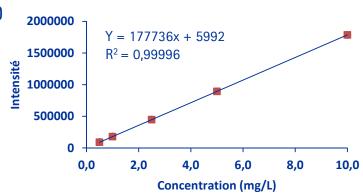
Le tableau ci-dessous donne les longueurs d'onde pertinentes pour la détermination à l'aide de l'ICP-OES et les limites de quantification.


Élément	Longueur d'ondes d'émission (nm)	LQ (mg/kg)
Fe	239,562	2,0
Mg	280,271	1,0
Ca	315,887	3,0
Na	589,592	3,0
K	766,490	1,5

EN 13805:2002


Données d'étalonnage - Calcium (Ca)

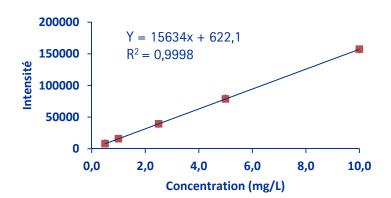
ID échantillon	Intensité (Hauteur)	Conc. (mg/l)
1	9208	0,5
2	12475	1,0
3	25234	2,5
4	48070	5,0
5	90670	10,0


Données d'étalonnage - Sodium (Na)

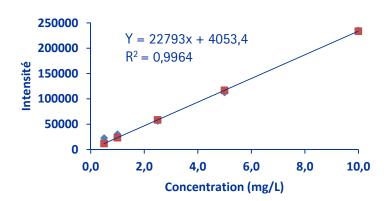
ID échantillon	Intensité (Hauteur)	Conc. (mg/l)
1	52753	0,5
2	91055	1,0
3	224058	2,5
4	464668	5,0
5	1042380	10,0

Données d'étalonnage - Magnésium (Mg)

ID échantillon	Intensité (Hauteur)	Conc. (mg/l)
1	98003	0,5
2	184064	1,0
3	453123	2,5
4	895895	5,0
5	1781856	10,0



EN 13805:2002


Données d'étalonnage - Fer (Fe)

ID échantillon	Intensité (Hauteur)	Conc. (mg/l)
1	9052	0,5
2	16226	1,0
3	38950	2,5
4	80062	5,0
5	156491	10,0

Données d'étalonnage - Potassium (K)

ID échantillon	Intensité (Hauteur)	Conc. (mg/l)
1	22605	0,5
2	30335	1,0
3	56651	2,5
4	112827	5,0
5	234966	10,0

Résultats : le tableau ci-dessous présente les valeurs moyennes du Fer (Fe), Magnésium (Mg), Calcium (Ca), Sodium (Na) et Potassium (K) rencontrés dans trois types d'échantillons différents.

Échantillon	Fe	Mg	Ca	Na	K
			(mg/kg)		
Bœuf	31,04	246,3	69,34	921,8	2692,5
Poulet	4,996	364,8	38,91	499,9	2946,3
Lait	1,329	123,5	402,2	402,2	1284,3

Résidus

Définition

Pesticides

- 1. Le terme de pesticide désigne toute substance ou toute association de substances destinée à prévenir, détruire ou contrôler toute espèce indésirable de plantes ou d'animaux causant des dommages ou se montrant autrement nuisibles durant la production, la transformation, le stockage, le transport ou la commercialisation des denrées alimentaires. Le terme comprend des substances destinées à être utilisées comme régulateurs de croissance des plantes, défoliants ou agents de dessiccation, et toute substance appliquée sur les cultures, avant ou après récolte, pour protéger les produits contre la détérioration durant l'entreposage et le transport.
- 2. Les pesticides sont couramment utilisés dans l'agriculture. Les pesticides peuvent demeurer en petites quantités (appelées résidus) dans ou sur les fruits, les légumes, les graines et autres aliments. Afin de veiller à ce que la nourriture soit sûre pour la consommation, des organismes officiels, tels que l'U.S. E.P.A. (United States Environmental Protection Agency ou Agence américaine de protection de l'environnement) réglemente la quantité de chaque pesticide qui est susceptible de demeurer dans ou sur les aliments.
- 3. Les pesticides sont classés en quatre catégories chimiques principales : les herbicides, les fongicides, les insecticides et les bactéricides.

Antibiotiques

1. Au cours de leur vie, les animaux peuvent devoir être traités avec différents médicaments pour prévenir ou guérir des maladies. Chez les animaux producteurs d'aliments, tels que les bovins, les porcins, la volaille et le poisson, cela peut entraîner des résidus des substances utilisées pour le traitement dans les produits alimentaires dérivés de ces animaux (par ex. la viande, le lait, les œufs). Les résidus ne doivent toutefois pas être nocifs pour le consommateur. Afin de garantir un niveau élevé de protection du consommateur, la législation requiert que la toxicité des résidus potentiels soit évaluée avant que l'utilisation d'une substance médicamenteuse chez des animaux producteurs d'aliments ne soit autorisée. Si cela est jugé nécessaire, des limites maximales de résidus (LMR) sont établies et, dans certains cas, l'utilisation de la substance en question est interdite.

Lectures complémentaires sur les résidus de pesticides et d'antibiotiques :

http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/default.htm

http://www.epa.gov/pesticides/index.htm

http://www.agf.gov.bc.ca/pesticides/

http://ec.europa.eu/food/food/index_en.htm

http://ec.europa.eu/food/plant/protection/pesticides/index_en.htm

http://ec.europa.eu/sanco_pesticides/public/index.cfm

http://en.wikipedia.org/wiki/Pesticide

Pesticides

Les pesticides sont des substances biologiques (telles qu'un virus, une bactérie, un antimicrobien ou un désinfectant) ou chimiques, ou des mélanges de substances destinés à détruire ou repousser les animaux nuisibles, ou à prévenir ou atténuer leurs infestations. Les nuisibles ciblés peuvent inclure des insectes, des phytopathogènes, des mauvaises herbes, des mollusques, des oiseaux, des mammifères, des poissons, des nématodes (vers ronds) et des microbes qui détruisent une propriété, causent des nuisances, répandent des maladies ou sont des vecteurs pour des maladies.

Il y a actuellement 507 pesticides répertoriés par l'Union européenne avec des limites maximales de résidus. Nombre d'entre eux sont difficiles à analyser en utilisant les méthodes traditionnelles. Par exemple, le chlorméquat et le mépiquat sont deux pesticides très hydrophiles ; ils sont largement utilisés comme régulateurs de croissance pour les plantes. Ils agissent par inhibition de la croissance végétative et promotion de la floraison chez une grande variété de fruits, légumes, céréales et coton. Ils sont éliminés dans le sol par des procédés microbiologiques et le produit de la décomposition est le dioxyde de carbone, mais peuvent s'accumuler dans les plantes et chez les animaux et les humains. L'Agence américaine de protection de l'environnement (US-EPA) a dressé une liste de composés qui doivent par conséquent être mesurés.

Dans des recueils antérieurs consacrés aux applications, vous pourrez trouver d'autres méthodes pour le dépistage des résidus.

NF EN 15662:2009

Il s'agit d'une méthode pour l'analyse des résidus de pesticides dans les aliments d'origine végétale, tels que les fruits (y compris les fruits secs), les légumes, les céréales et les produits transformés qui en sont dérivés. La méthode permet d'analyser 300 composés en même temps, en utilisant une extraction/partition avec de l'acétonitrile et une méthode SPE-QuEChERS pour le nettoyage, suivie d'une GC-MS et/ou d'une LC-MS/MS. Dans cet exemple toutefois, seuls 10 composés ont été déterminés.

Réactifs:

(Utiliser uniquement des qualités analytiques reconnues, sauf indication contraire)

Eau (Réf. 1.15333)
Acétonitrile (Réf. 1.00029)
Méthanol, de qualité LC-MS
Formiate d'ammonium, de qualité LC-MS
Acide formique (Réf. 1.00264.1000)
Sulfate de magnésium anhydre (Réf. 1.06067)
Chlorure de sodium (Réf. 1.06404)
Bondesil PSA, 40 µm, 100 g
Sorbant de SPE en vrac à base de carbone, flacon de 25 g

Pesticides étalons

Azoxystrobine

Buprofézine

Fenpyroximate

Hexythiazox

Myclobutanil

Penconazole

Tétraconazole

Tolylfluanide

Trifloxystrobine

Triflumizole

NF EN 15662:2009

Préparation d'échantillon (tomates)

- 1. Prendre un échantillon représentatif (10 g) et le placer dans un récipient adapté
- 2. Ajouter 10 ml d'acide formique/acétonitrile (1:1 volume/volume-%) et homogénéiser
- 3. Ajouter le mélange tampon-sel, homogénéiser
 - Sulfate de magnésium (4 g)
 - Chlorure de sodium (1 g)
 - Centrifuger à 4200 tr/min, 2,5 min
- 4. Récupérer autant de phase supérieure (4 ml) que possible
- 5. Ajouter le mélange de sorption-sel à cette phase, homogénéiser
 - Sorbant de SPE en vrac à base de carbone (35,0 mg)
 - Bondesil-PSA (113,0 mg)
 - Sulfate de magnésium (652,0 mg)
 - Centrifuger à 4200 tr/min, 2,5 min
- 6. Transférer 1 ml de la phase supérieure dans une fiole

Analyse par LC-MS/MS (utiliser un système d'UHPLC approprié) Détecteur de MS-MS : système de MS/MS QTRAP ou similaire

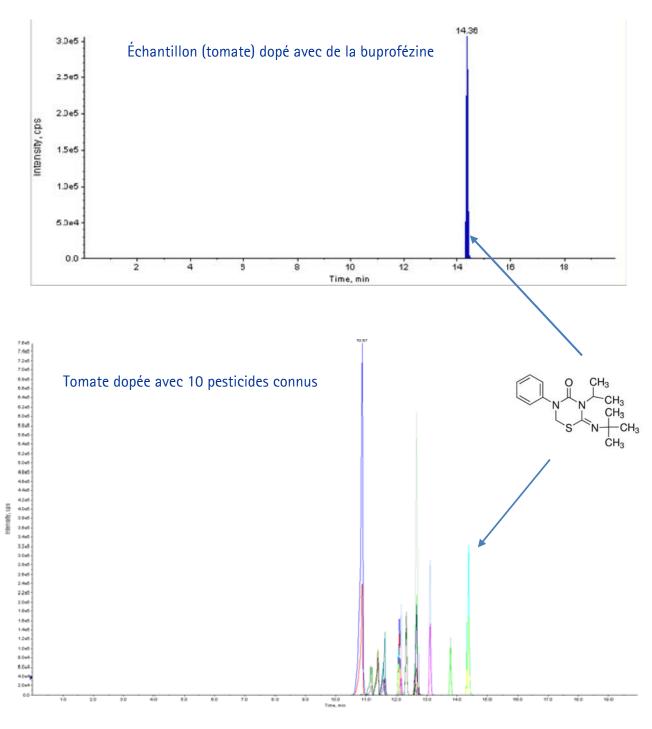
Colonne d'HPLC : Fused-Core® C_{18} (10 cm x 3,0 mm, 2,7 μ m) Colonne de garde : Fused-Core® C_{18} (0,5 cm x 3,0 mm, 2,7 μ m)

Système d'éluent : A : 1 mmol/l de formiate d'ammonium avec 0,1 % d'acide formique dans de l'eau

B: Méthanol

Débit : 500 µl/min Injection : 20 µl Température : 40 °C Profil de gradient :

Durée (min)	A (%)	B (%)
0	95	5
2,0	65	35
8,5	5	95
15,0	5	95
16,0	95	5
20,0	95	5


NF EN 15662:2009

Paramètres	de MS-MS
Polarité	+
CUR	40 psi
CAD	Élevée
IS	5500 V
Temp.	400 °C
GS1	35 psi
GS2	45 psi
Temp.	400 °C 35 psi

	Q1	Q3	DP-(V)	EP-(V)	CE-(V)	CXP-(V)	TR (min)
Azoxystrobine 1	404,1	372,3	31	6,5	19	6	11,04
Azoxystrobine 2	404,1	344,2	31	6,5	25	6	11,04
Buprofézine 1	306,1	201,3	50	4	17	4	13,34
Buprofézine 2	306,1	106,0	50	4	31	4	13,34
Fenpyroximate 1	422,3	366,3	46	6	21	4	14,62
Fenpyroximate 2	422,3	135,2	46	6	45	4	14,62
Hexythiazox 1	353,3	228,0	41	6,5	19	4	14,02
Hexythiazox 2	353,3	168,3	41	6,5	31	4	14,02
Myclobutanil 1	289,1	70,2	41	5,5	31	4	11,56
Myclobutanil 2	289,1	125,1	41	5,5	39	4	11,56
Penconazole 1	284,2	159,1	36	5,5	35	4	12,28
Penconazole 2	284,2	70,2	36	5,5	29	4	12,28
Tétraconazole 1	372,1	159,0	46	4	39	4	11,79
Tétraconazole 2	372,1	70,1	46	4	39	4	11,79
Tolylfluanide 1	347,2	137,2	41	5,5	37	4	12,23
Tolylfluanide 2	347,2	238,0	41	5,5	15	4	12,23
Trifloxystrobine 1	409,3	186,1	41	4	23	4	12,85
Trifloxystrobine 2	409,3	206,3	41	4	19	4	12,85
Triflumizole 1	346,2	278,3	36	4	15	4	12,89
Triflumizole 2	346,2	73,1	36	4	23	4	12,89

NF EN 15662:2009

dans les méthodes des normes

Dans ce recueil, nous discuterons de plusieurs paramètres qui doivent être vérifiés par l'industrie alimentaire. La matière première (non seulement l'aliment cru, mais également l'alimentation de l'animal et son environnement) et la transformation agro-alimentaire afin de nous assurer que ce que nous servons est sûr.

Ce recueil vous donne des exemples utilisant les méthodes des normes définies par des organismes internationaux ou des autorités locales pour la détermination de différents paramètres. Mais comment ces méthodes ont-elles été sélectionnées et existe-t-il une autre alternative ?

Les normes suivent le développement des techniques analytiques, mais de par leur nature, elles évoluent lentement. Toute nouvelle technique doit faire l'objet de tests et d'études pour vérifier sa reproductibilité et sa facilité d'utilisation.

Un autre facteur important est que la liste des paramètres critiques, ainsi que les gammes de concentration de certains composants sont modifiées dans les normes au fil du temps. Le nombre de molécules qui s'avèrent nocives augmente. Cette augmentation est due à de nouvelles technologies, à de nouveaux matériaux fabriqués par l'Homme, mais également au développement continu de nos connaissances des maladies. Cela signifie que nous devons développer des techniques de mesure pour de nouveaux matériaux, mais également pour de nouvelles matrices ou pour des plages de concentration très basses.

Avant de commencer une détermination quantitative, nous devons nous assurer que la molécule ou l'élément cible est bien dans une forme mesurable, qu'aucune limite physique ni chimique n'affectera nos résultats, et que le résultat mesuré ne provient effectivement que du composé ciblé. Dans le cas des aliments, cela peut souvent se révéler être un processus difficile. C'est la raison pour laquelle, dans la mesure du possible, l'industrie agro-alimentaire leur préfère des méthodes moins sensibles aux contaminants et des méthodes qui requièrent une préparation d'échantillon simple.

Dans les sections suivantes, vous trouverez un aperçu et une courte introduction aux techniques mentionnées dans ce recueil. Nous vous donnons une description succincte de la technique, accompagnée de conseils relatifs aux aspects mentionnés dans la description.

Spectroscopie atomique

En spectroscopie atomique, nous pouvons réaliser des déterminations qualitatives et quantitatives des éléments sur la base d'une de leurs caractéristiques au niveau atomique. Cela peut être par :

Absorption : SAAÉmission : ICP

Dans les deux cas, nous devons transformer l'élément ciblé dans sa forme atomique pour effectuer la mesure.

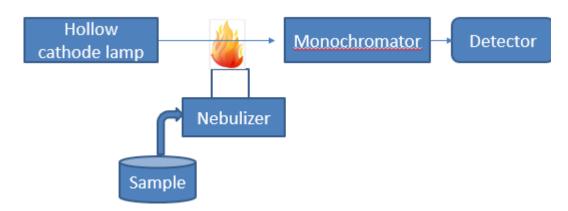
Excited state lonic Ground state Excited states Atomic Ground state

Atoms are at

- Excitation: moving to higher energy level, absorbing energy
- Emission: moving to lower energy level, loosing energy

The energy levels of the different states are specific for the elements and have discrete values

La spectroscopie optique débuta avec Newton au 17^e siècle, mais il fallut beaucoup de temps pour que les lignes des spectres d'émission et d'absorption soient perçues comme étant d'origine atomique et que leur utilisation dans une technique de mesure analytique soit développée.


Des premiers pas furent accomplis en spectroscopie d'émission atomique permettant la découverte de plusieurs nouveaux éléments, tels que le césium, le rubidium, le thallium, l'indium et le gallium.

Aujourd'hui, dans la majorité des cas, on utilise la SAA ou l'ICP pour la détermination de la composition élémentaire.

Spectroscopie d'absorption atomique (SAA)

L'absorption atomique quantifie l'absorption des atomes à l'état fondamental dans un état gazeux. Pour effectuer une transition vers un niveau d'énergie supérieur, les atomes absorbent de la lumière dans la gamme visible ou U.V. La concentration peut être déterminée sur la base de cette absorption en utilisant une courbe d'étalonnage.

On distingue les instruments à faisceau simple et double. Dans les instruments à double faisceau, la lumière provenant de la lampe est divisée entre le "faisceau de l'échantillon" et le "faisceau de référence". La source de lumière généralement utilisée est une lampe à cathode creuse (HCL) ou une lampe à décharge sans électrode (EDL).

L'atomisation est la séparation des particules, dans ce cas au niveau atomique. Cela s'effectue par exposition de l'analyte à des températures élevées. On distingue les systèmes avec :

- Flamme
- Tube de graphite
- Générateur d'hydrures

Ces atomiseurs aspirent l'échantillon dans le trajet optique où il est illuminé par la lampe. La lampe est spécifique pour chaque élément et émet à sa longueur d'ondes caractéristique. Pour l'analyse quantitative, un blanc et une courbe d'étalonnage sont nécessaires.

La méthode est applicable à environ 70 éléments. La limitation est la longueur d'ondes : généralement, nous pouvons travailler à une longueur d'onde supérieure à 200 nm, mais l'hydrogène et certains autres éléments ont leur ligne de résonance en dessous de 200 nm.

Spectroscopie d'absorption atomique (SAA)

- Atomiseur de flamme

Il nous faut un mélange de comburant et de gaz combustible pour la flamme (tels que air-acétylène, avec une température typique autour de 2200 °C ou N_2 0-acétylène à env. 2700 °C). En moyenne, 5-15 % de l'échantillon vaporisé atteindra la flamme. Le volume d'échantillon doit se situer autour de 0,5-1,0 ml.

- Four de graphite

Un four revêtu de graphite est utilisé pour vaporiser l'échantillon en chauffant le tube en utilisant une alimentation haute tension. Aucune préparation d'échantillon n'est requise. L'analyse d'une petite quantité d'échantillon et l'analyse directe des substances solides sont possibles. Le système est capable d'atomiser l'échantillon tout entier et de retenir l'échantillon atomisé dans le trajet optique pendant une longue période, améliorant ainsi la sensibilité de la technique. La détermination d'environ seulement 40 éléments est possible, mais avec des volumes d'échantillon de l'ordre du microlitre et des seuils de détection 100-1000 fois meilleurs que ceux des systèmes à atomiseur de flamme.

- Générateur de vapeur

Afin de séparer l'analyte de la matrice de l'échantillon, nous pouvons utiliser la technique de la génération de vapeurs chimiques, dans laquelle une espèce gazeuse est générée suite à une réaction chimique. On distingue :

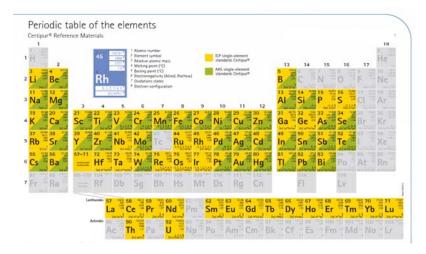
- 1. La technique de génération de vapeurs froides (CVAAS) pour la détermination du mercure (Hg) et
- 2. La technique de génération d'hydrures (HGAAS) pour les éléments formant des hydrures à liaison covalente gazeux (As, Bi, Ge, In, Pb, Sb, Se, Sn ou Te).

Dans les applications, des interférences peuvent se produire, telles que l'ionisation, des interférences de la matrice, des interférences chimiques ou du bruit de fond, ce qui peut augmenter ou réduire la taille de notre signal. Étant donné qu'elles peuvent considérablement influencer notre résultat, ces interférences doivent être prises en compte lors du développement de la méthode.

Le Cd (228,802 nm) et l'As (228,812 nm) sont de bons exemples. Dans ces cas là, la longueur d'ondes doit être modifiée ou un des autres éléments doit être retiré.

Torche à plasma (ICP)

Le plasma (du grec, "forme, figure") est un des quatre états fondamentaux de la matière, les autres étant solide, liquide et gazeux. Un plasma a des propriétés différentes de celles des autres états. Un plasma peut être créé en chauffant un gaz ou en le soumettant à un champ électromagnétique puissant.

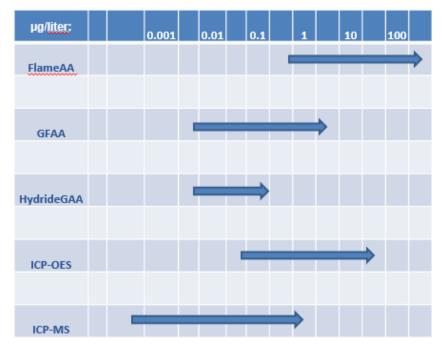

Une torche à plasma (ICP) est un type de source de plasma dans lequel l'énergie est fournie par des courants électriques qui sont produits par une induction électromagnétique, c'est-à-dire par des champs magnétiques variant dans le temps.*

*[A. Montaser and D. W. Golightly, eds. (1992). Inductively Coupled Plasmas in Analytical Atomic Spectrometry. VCH Publishers, Inc., New York]

La spectrométrie d'émission par plasma à couplage inductif (ICP-ES) s'appuie sur l'émission d'énergie caractéristique des atomes et des ions des éléments présents dans l'échantillon, passant d'un état excité à l'état fondamental.

Pour ce procédé, on utilise un plasma haute température (10 000 K peuvent être atteints dans un plasma d'argon). Pour la détection de la lumière émise, un tube ou des tubes photomultiplicateur(s) sont physiquement positionnés pour détecter des longueurs d'ondes spécifiques ou, dans les instruments plus modernes, une détection est effectuée par des photodétecteurs à semiconducteur (CCD ou Charge Coupled Devices).

Les intensités mesurées sont comparées aux intensités d'étalons de concentration connue pour calculer les concentrations élémentaires de l'échantillon inconnu. D'autre part, dans cette technique, une combinaison spécifique d'éléments peut entraîner des interférences. Dans la plupart des cas, cela peut être corrigé par un logiciel spécial de l'instrument.


Détection de masse couplée à un plasma inductif (ICP-MS)

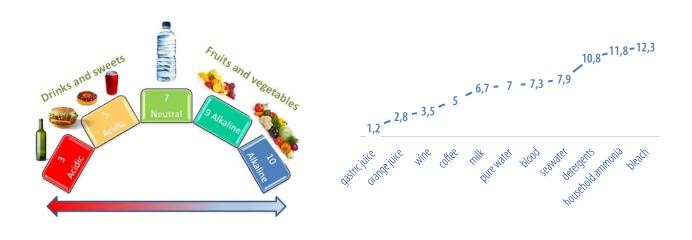
Une forme spéciale d'ICP consiste à la combiner avec une détection de masse (ICP-MS), dans laquelle une source d'ICP à haute température est combinée à un spectromètre de masse. Les éléments présents dans l'échantillon sont convertis en ions par l'ICP et sont séparés et détectés par le spectromètre de masse. Cela offre plusieurs avantages :

- Des matrices simples et complexes peuvent être traitées avec un faible niveau d'interférences de la matrice grâce à la haute température de la source de l'ICP
- Les seuils de détection sont généralement équivalents ou supérieurs à ceux obtenus par spectroscopie d'absorption atomique en four de graphite (GFAAS)
- Une très bonne capacité de détection comparée à l'ICP-AES avec le même débit d'échantillons
- Un rendement supérieur à la GFAAS peut être obtenu
- L'obtention d'informations isotopiques est possible

Dans ce tableau, vous pouvez voir les plages de détection typiques des différentes techniques de

spectroscopie atomique:

pН


Le pH est un paramètre rapidement mesurable pour obtenir une première information sur la qualité de différents types d'aliments crus ou transformés.

Si nous prenons l'exemple du lait : le pH du lait est environ de 6,8, et il est testé aussi bien à la traite qu'au point de livraison final. Au cours de divers procédés tels que la stérilisation, le pH est régulièrement vérifié, puisqu'une valeur inférieure contribue à accélérer le procédé. Cependant, des niveaux de pH bas peuvent également indiquer par exemple que les bovins sont porteurs d'infections leucocytaires.

La viande est un autre exemple. Le pH des carcasses constitue un test initial important pour déterminer l'état de santé de l'animal avant abattage, la qualité de l'élevage et les signes de stress lors de l'abattage. Une valeur de pH typique, située entre 5,4 et 7,0, peut également indiquer si la viande fraîche a été stockée correctement, car le pH varie en différentes parties de l'animal en fonction de la masse musculaire (par exemple, la longe a une valeur de pH inférieure).

Des valeurs de pH trop élevées indiquent une perte d'arôme et une viande d'aspect plus foncé, se traduisant par une valeur inférieure sur le marché. En plus de la viande crue, les ingrédients utilisés dans la production du jambon et des saucisses sont souvent réfrigérés. En vérifiant simplement le pH à l'entrée du liquéfacteur et des points de drainage, il est possible de déterminer si de l'ammoniaque s'est écoulée.

Quelques exemples caractéristiques des valeurs de pH des aliments :

pН

Le concept de pH a été introduit pour la première fois par le chimiste danois Søren Peder Lauritz Sørensen au laboratoire Carlsberg en 1909 et modifié pour la version moderne du pH en 1924. La signification exacte du "p" de "pH" est contestée. Selon la Fondation Carlsberg, pH signifie "puissance de l'hydrogène". Une autre suggestion est que le "pH" vient des termes latin "Pondus hydrogenii" (en français : quantité d'hydrogène), "Potentia hydrogenii" (en français : capacité d'hydrogène), ou potentiel hydrogène.

L'utilisation actuelle en chimie est que le "p" représente le "cologarithme décimal de", comme également dans le terme pKa, qui est utilisé pour les constantes de dissociation acide. Par définition, le pH est une mesure de l'acidité ou de l'alcalinité d'une solution aqueuse. L'acidité ou l'alcalinité d'une solution aqueuse est déterminé par le nombre relatif d'ions hydrogène (H+) ou d'ions hydroxyle (OH-) présents.

Généralement, on présume que le pH est le logarithme négatif de la concentration en ions

hydrogène :

 $pH = -log 10 [H^+].$

Concentration H+ (mol/l)	Concentration OH- (mol/l)	рН
1	0,0000000000001	0
0,1	0,000000000001	1
0,01	0,00000000001	2
0,001	0,0000000001	3
0,0001	0,000000001	4
0,00001	0,00000001	5
0,000001	0,00000001	6
0,0000001	0,0000001	7
0,00000001	0,000001	8
0,000000001	0,00001	9
0,000000001	0,0001	10
0,0000000001	0,001	11
0,00000000001	0,01	12
0,000000000001	0,1	13
0,0000000000001	1	14

De cette façon, une simple échelle de 0 à 14 a été créée : l'échelle de pH. L'échelle de pH est logarithmique et par conséquent, le pH est une grandeur sans dimension.

pН

En fait, plus précisément, nous parlons de l'activité hydrogène (H⁺). Une mesure de pH ne détermine que la concentration en ions hydrogène actifs dans une solution, et non la concentration totale en ions hydrogène. Dans les solutions diluées uniquement, tous les anions et tous les cations sont tellement éloignés les uns des autres que la concentration en ions H⁺ et l'activité des ions H⁺ sont identiques.

Cela explique le changement de pH observé dans l'eau pure avec la température. Si la température de l'eau pure augmente, la dissociation des ions hydrogène et hydroxyles s'accroît. Puisque le pH est lié uniquement à la concentration des ions hydrogène dissociés, la valeur de pH diminue bien que le pH de l'eau soit toujours neutre.

Selon l'équation de Nernst :

$$E = E^{0} + \frac{RT}{F} \ln(a_{H^{+}}) = E^{0} - \frac{2.303RT}{F} \text{pH}$$

E est le potentiel mesuré, E⁰ est le potentiel de l'électrode de référence, R est la constante des gaz parfaits, T est la température en kelvin, F est la constante de Faraday.

Pour H+, le nombre d'électrons transférés est égal à un.

Cela signifie que le potentiel de l'électrode est proportionnel au pH, lorsque le pH est défini en termes d'activité, et que le pH d'un échantillon donné change avec la température de l'échantillon.

Le pH est généralement déterminé par des bandelettes indicatrices ou mesuré avec des instruments, en utilisant une électrode en verre sensible au pH, une électrode de référence et un capteur de température. Ils peuvent être intégrés sous la forme d'une électrode en verre combinée.

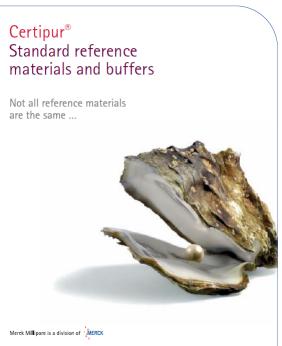
L'électrode de mesure du pH utilise un verre sensible au pH spécialement formulé, qui, au contact de la solution, développe un potentiel (c.-à-d. une tension) proportionnel au pH de la solution. L'électrode de référence est conçue pour maintenir un potentiel constant à une température donnée.

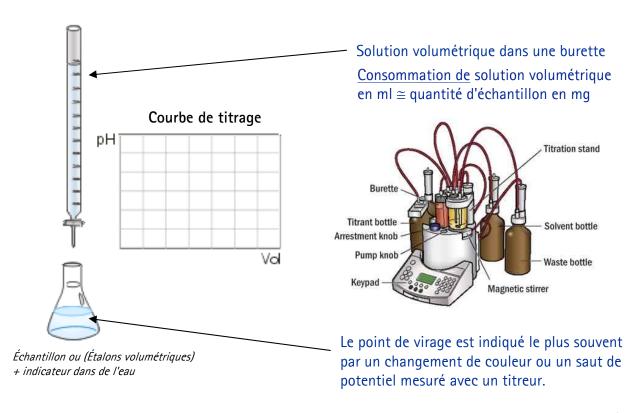
pН

Lors de la procédure de mesure, l'étalonnage de l'électrode est très important : le potentiel est proportionnel au pH, mais pour connaître la valeur absolue, nous devons utiliser des solutions d'étalonnage, idéalement dans la gamme ou proches de la gamme de pH de notre échantillon.

La plupart des instruments offrent un calcul automatisé de la courbe de calibration sur la base de l'étalonnage d'un tampon de pH en 2 ou 3 points.

Le pH semble facile à mesurer, mais il y a plusieurs facteurs d'erreur potentiels :


- La qualité du tampon d'étalonnage
- Toute difficulté avec la procédure d'étalonnage
- Un ré-étalonnage au moment opportun
- Des erreurs provenant du fonctionnement de l'électrode à pH élevé ou faible (erreur alcaline, erreur acide).
- L'exactitude de la compensation de la température
- Le vieillissement de l'électrode

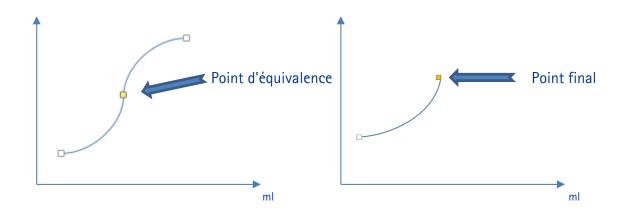

Titrage

Dans le cas des échantillons alimentaires, le titrage est une méthode très largement utilisée pour la détermination des différents ingrédients.

Le titrage peut être effectué manuellement ou à l'aide d'instruments. Il peut être facilement ajusté selon les besoins, en fonction du nombre d'échantillons et de leur diversité, ainsi que du temps, du budget et de la capacité en personnel disponibles dans le laboratoire.

Principe:

Le titrage (ou titration) est une technique analytique qui permet la détermination quantitative d'une substance spécifique (analyte) dissoute dans un échantillon.



Le titrage volumétrique s'appuie sur une réaction chimique complète entre l'analyte et un réactif (le titrant) de concentration connue qui est ajouté à l'échantillon.

Titrage

On peut différencier les titrages basés sur le type de réaction, sur la méthode de détection ou sur la courbe de titrage que nous visons (point d'équivalence ou point final prédéfini).

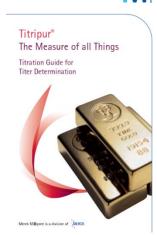
Les titrages classiques étaient effectués en utilisant un indicateur avec changement de couleur (cf. les exemples de titrage acide/base dans le tableau ci-dessous).

De nos jours, il est plus courant d'utiliser une électrode pour la détection, y compris dans les titrages manuels.

Indicateur	Couleur du côté acide	Gamme du changement de couleur	Couleur du côté basique
Violet de méthyle	Jaune	0,0-1,6	Violet
Bleu de bromophénol	Jaune	3,0-4,6	Bleu
Orangé de méthyle	Rouge	3,1-4,4	Jaune
Rouge de méthyle	Rouge	4,4-6,3	Jaune
Tournesol	Rouge	5,0-8,0	Bleu
Bleu de bromothymol	Jaune	6,0-7,6	Bleu
Phénolphtaléine	Incolore	8,3-10,0	Rose
Jaune d'alizarine	Jaune	10,1-12,0	Rouge

Titrage

Quelques exemples de titrages typiques dans les échantillons alimentaires :


•	Acide/Base	Indice de saponification, en utilisant une électrode à pH en verre
•	Rédox	Teneur en vitamine C, en utilisant une électrode rédox à anneau de platine
•	Complexométrique	Teneur en calcium, en utilisant un capteur photométrique ou ionique spécifique du calcium
•	Thermométrique	Sel en tant que teneur en sodium, en utilisant un capteur de température
•	Précipitation	Sel en tant que teneur en chlorure, en utilisant une électrode à anneau d'argent

Titrant:

Nous comprendrons l'importance de la concentration exacte du titrant (également appelé "titre"), si nous considérons que nos résultats sont calculés à partir de cette concentration !

La stabilité du titrant dans le temps doit également être prise en compte, au cas par cas. Différents facteurs peuvent entraîner une déviation du titre :

- Une préparation imprécise du titrant
- La pureté du titrant utilisé
- Des changements dus à une instabilité

Pour ces derniers, citons par exemple les titrants basiques, tels que les hydroxydes. Ils absorbent le dioxyde de carbone de l'air avec le temps et leur molarité change. Un autre exemple est le fameux titrage selon Karl Fischer, dans lequel il est pratiquement inévitable que de l'humidité provenant de l'environnement n'atteigne le titrant.

Le facteur pour une concentration effective est déterminé au moyen d'une détermination du titre, c.-à-d. du titrage d'une substance dont la concentration est connue avec exactitude, généralement un étalon primaire.

Traçabilité des solutions volumétriques et des étalons volumétriques aux matériaux de référence standards (MRS) du NIST

Méthode volumétrique	Matériaux de référence standards (MRS)	Solution volumétrique	Étalons volumétriques Offre de produits
Acidimétrie	Tris(hydroxyméthyl)-aminométhane (NIST)	HCI	Étalon volumétrique Tris(hydroxyméthyl)-aminométhane, matériau de référence secondaire pour l'acidimétrie, avec traçabilité au matériau de référence standard (MRS) du NIST Certipur® (Reag. USP) Réf. 1.02408.0080
		HCI	Étalon volumétrique de carbonate de sodium, matériau de référence secondaire pour l'acidimétrie, avec traçabilité au MRS du NIST Certipur® (Réact. de la Ph. eur.) Réf. 1.02405.0080
Alcalimétrie	Hydrogénophtalate de potassium (NIST)	NaOH	Étalon volumétrique de carbonate de sodium, matériau de référence secondaire pour l'acidimétrie, avec traçabilité au MRS du NIST Certipur® (Réact. de la Ph. eur.) Réf. 1.02405.0080
	Acide benzoïque (NIST)	NaOH	Étalon volumétrique d'hydrogénophtalate de potassium, matériau de référence secondaire pour l'alcalimétrie, avec traçabilité au matériau de référence standard (MRS) du NIST Certipur® (Réact. de la Ph. eur., Reag. USP) Réf. 1.02400.0080
Argentométrie	Chlorure de potassium (NIST)	AgNO ₃ en solution	Étalon volumétrique d'acide benzoïque, matériau de référence secondaire pour l'argentométrie, avec traçabilité au MRS du NIST Certipur® (Réact. de la Ph. eur., Reag. USP) Réf. 1.02401.0060
Réductimétrie	Chlorate de potassium (NIST)	Thiosulfate de sodium en solution	Étalon volumétrique de chlorure de sodium, matériau de référence secondaire pour l'argentométrie, avec traçabilité au MRS du NIST Certipur® Réf. 1.02406.0080
		Thiosulfate de sodium en solution	Étalon volumétrique de dichromate de potassium, matériau de référence secondaire pour le titrage rédox, avec traçabilité au MRS du NIST Certipur® (Reag. USP) Réf. 1.02403.0100
Oxydimétrie	Oxalate disodique (NIST)	Permanganate de potassium en solution	Étalon volumétrique de sulfate d'éthylène-di-ammonium de fer (II), matériau de référence secondaire pour le titrage rédox, avec traçabilité au matériau de référence standard (MRS) du NIST Certipur® Réf. 1.02402.0080
		Permanganate de potassium en solution	Étalon volumétrique d'oxalate de sodium, matériau de référence secondaire pour le titrage rédox, avec traçabilité au matériau de référence standard (MRS) du NIST Certipur® (Reag. USP) Réf. 1.02407.0060
Complexométrie	Zinc (NIST)	EDTA (Solution Titriplex III)	Étalon volumétrique de zinc, matériau de référence secondaire pour la complexométrie, avec traçabilité au MRS du NIST Certipur® (Réact. de la Ph. eur.) Réf. 1.02409.0100
		EDTA (Solution Titriplex III)	Étalon volumétrique de carbonate de calcium, matériau de référence secondaire pour la complexométrie, avec traçabilité au matériau de référence standard (MRS) du NIST Certipur® (Reag. USP) Réf. 1.02410.0100

Titrage

Autres facteurs d'erreur potentiels :

Capteur:

- En effectuant un titrage à point final prédéfini, vous devez vous préoccuper de tous les facteurs mentionnés à la section consacrée au pH.
- De façon générale, vous devez vous occuper de la maintenance de votre électrode afin d'obtenir le niveau de sensibilité et le temps de réponse requis.

Température :

- En effectuant un titrage à point final prédéfini, vous devez vous préoccuper des facteurs mentionnés à la section consacrée au pH.
- De façon générale, tout titrage volumétrique est influencé par le changement de densité avec la température et donc par le changement de concentration associé (par exemple, en été, si vous effectuez une détermination de titre le matin par 22 °C et que la température du laboratoire passe à 32 °C l'après-midi, vous obtiendrez une modification importante du titre).

État des outils / de l'équipement :

Vous devez vous assurer d'utiliser la verrerie appropriée et de ne pas oublier la maintenance régulière.

Manipulation de l'échantillon :

Afin de vous assurer que vos résultats sont fiables, vous devez évaluer l'ensemble de votre procédure de titrage, y compris l'échantillonnage, la manipulation/le stockage de l'échantillon, la pesée (y compris l'évaluation de la balance).

Titrage selon Karl Fischer

Le titrage selon Karl Fischer est un type spécifique de titrage pour la détermination de la teneur en eau.

La teneur en eau joue un rôle important dans la qualité et la durée de conservation de la plupart des produits alimentaires. Mais comment déterminer spécifiquement la teneur en eau, sous toutes ses formes, sans aucun autre produit de décomposition ? Cela peut être fait soit à l'aide d'une instrumentation encombrante et onéreuse (par exemple, CPG, RMN, etc.), soit par un titrage de Karl Fischer spécifique de l'eau.

La réaction :

$$H_2O + I_2 + SO_2 + CH_3OH + 3RN -> [RNH]SO_4CH_3 + 2[RNH]I$$

L'eau et l'iode sont consommés en quantités équimolaires dans la réaction (cela signifie que, si vous connaissez la quantité de l₂ consommée, vous connaissez la quantité d'eau qui était présente dans l'échantillon).

Le point final est détecté le plus souvent par une méthode bipotentiométrique.

On distingue la méthode volumétrique et la méthode coulométrique.

	Volumétrie	Coulométrie
Convient aux échantillons avec :	Haute teneur en humidité	Teneurs en eau de l'ordre du ppm
Titrage	Bipotentiométrique	Bipotentiométrique
Production de l'iode	Incluse avec les réactifs	Produite par une électrode

Règle empirique :

Échantillons avec > 1 % d'eau = méthode volumétrique Échantillons avec < 1 % d'eau = méthode coulométrique

Titrage selon Karl Fischer

Dans la plupart des cas, seule une homogénéisation de l'échantillon est nécessaire pour sa bonne préparation. Un homogénéiseur peut être directement utilisé dans la verrerie de titrage.

En général, en titrage de KF, vous devez vous préoccuper de diverses réactions parasites avec les aldéhydes et les cétones, mais ces composés sont normalement présents en très faibles concentrations dans les échantillons alimentaires, et le résultat concernant la teneur en eau ne sera donc pas significativement influencé.

Lors du titrage, il convient de garder à l'esprit certains aspects importants :

- Il peut y avoir de l'eau sous différentes formes (de surface, dans des orifices internes, sous forme de complexes) dans votre échantillon, donc assurez-vous de bien savoir ce que vous mesurez
- Choisissez la bonne méthode en adéquation avec la teneur en eau de votre échantillon
- Vérifiez que votre titre est toujours correct
- Le pH et la température peuvent influencer votre résultat

Chromatographie

La chromatographie est un terme collectif qui désigne différentes techniques de séparation de mélanges. Un transporteur/véhicule, que l'on appelle "phase mobile", entraîne le mélange d'échantillon à travers une structure permanente avec ou sans matériau modifié chimiquement, appelée "phase stationnaire". Les divers constituants du mélange de l'échantillon migrent à des vitesses différentes et interagissent de manière différente avec la phase stationnaire, ce qui entraîne leur séparation. Le processus de séparation s'appuie sur une partition différentielle entre les phases mobile et stationnaire.

Nous avons des différences dans le choix :

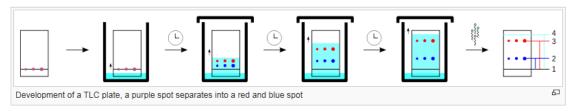
- du transporteur de phase stationnaire ou matériau de base
- de la composition de la phase mobile
- des paramètres physiques (tels que la température, la pression, les différentes tailles de colonnes [longueurs, diamètres])

Nous distinguons également les différentes techniques sur la base des phases mobile et stationnaire utilisées.

- Chromatographie en phase gazeuse (CPG) : gaz + colonne
- Chromatographie liquide (LC) : liquide + colonne
- Chromatographie sur couche mince (TLC ou CCM) : liquide + plaque

Si vous avez un grand nombre d'échantillons avec une matrice complexe et souhaitez minimiser la préparation d'échantillon, vous pouvez opter pour la chromatographie sur couche mince. Si vous êtes intéressé(e) par les composés volatils, la chromatographie en phase gazeuse est la technique à privilégier. Si vous souhaitez vérifier des contaminants présents en faibles concentrations, la chromatographie liquide ultra/haute performance (HPLC/UHPLC) est une alternative viable, car elle offre une efficacité de séparation très élevée et éluera les molécules d'intérêt sous forme de pics fins pour permettre une détection sensible.

Après l'étape de chromatographie, il doit y avoir un outil de détection et une détermination quantitative des composés. Différents types de molécules et différentes gammes de concentration requièrent des techniques de détection différentes.


Afin de sélectionner le mode de détection le plus approprié, quatre paramètres importants doivent être pris en compte : la nature chimique des analytes, les interférences potentielles, la limite de détection et la limite de quantification requises, la plage de linéarité, la disponibilité et/ou le coût du détecteur.

Chromatographie sur couche mince (CCM)

La chromatographie sur couche mince (CCM) est une technique dans laquelle les composés sont séparés sur une fine couche de matériau adsorbant, typiquement un revêtement de gel de silice sur une plaque de verre ou une feuille d'aluminium ou de plastique.

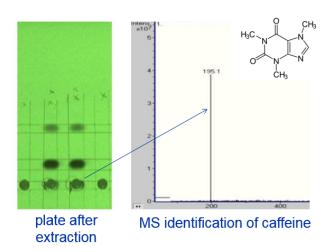
La CCM est une technique simple et très bon marché, permettant la préparation de l'échantillon et la séparation chromatographique en une seule étape en raison d'une tolérance élevée vis-à-vis de la matrice de l'échantillon.

Une petite goutte de solution contenant l'échantillon est déposée sur une plaque. Une petite quantité d'un solvant approprié (l'éluant) est versé dans une cuve de séparation. La plaque de CCM est ensuite placée dans la cuve, de façon à ce que la/les goutte(s) d'échantillon ne touche(nt) pas la surface de l'éluant à l'intérieur de la cuve, puis le couvercle est fermé. Le solvant remonte le long de la plaque par capillarité, rencontre le mélange d'échantillon et l'entraîne vers le haut de la plaque.

Les composés sont séparés en fonction de leurs différences d'attraction vis-à-vis de la phase stationnaire et en raison de leurs différences de solubilité dans le solvant. Dans certains cas, si les échantillons sont colorés, vous pouvez détecter visuellement les différents composés sur la plaque. Les options les plus fréquemment utilisées sont :

- 1. L'utilisation d'une solution spéciale, qui donne une réaction colorée avec l'analyte (telle que l'iode)
- 2. La lumière U.V. (à 366 nm pour voir certains composés organiques fluorescents ou à 254 nm en utilisant une plaque avec une couche d'adsorbant fluorescent à cette longueur d'ondes, sur laquelle les gouttes d'analyte éteindrons la fluorescence)
- 3. Après élution de la/des goutte(s), toute autre technique d'analyse connue peut être utilisée pour identifier les composés (telle que la MS).

La CCM est souvent utilisée comme technique manuelle, mais il existe différentes possibilités d'automatiser l'application, la détection ou l'évaluation et la documentation.



Chromatographie sur couche mince avec détection de masse (CCM-MS)

Au cours des dernières années, plusieurs techniques de couplage avec la spectrométrie de masse ont vu le jour, notamment la TLC-MS qui élargit la portée de l'analyse par TLC en permettant une identification univoque des substances.

La technique la plus utilisée pour le couplage de la TLC (CCM) à la MS est l'échantillonnage par élution. Il s'agit d'un système semi-automatique pour extraire les analytes de la plaque de CCM et les transférer directement dans le spectromètre de masse. Il convient à tous les matériaux de couche mince et à tout éluant compatible avec la LC-MS. L'interface peut être facilement raccordée à tout type de spectromètre de masse couplé à une LC. Par conséquent, les champs d'application sont assez vastes.

La principale caractéristique du couplage basé sur l'élution est peut-être son indépendance totale vis-à-vis du spectromètre de masse (en principe, tout système de MS peut être utilisé). De plus, l'extraction hors ligne dans des fioles est possible, si une analyse ultérieure (par RMN, par exemple) est nécessaire. Dans le mode TLC-MS en ligne, l'interface se situe entre la pompe d'HPLC et le système de MS, et son installation se résume à un branchement ("plug and play"). Il est juste de dire que de tels systèmes offrent un accès le plus direct possible à la TLC-MS et peuvent être utilisés avec pratiquement tout type de plaque.



Chromatographie en phase gazeuse (CPG)

La chromatographie en phase gazeuse (CPG ou GC) est une technique de séparation pour les composés volatils thermiquement stables. Il s'agit d'une technique simple, facile à mettre en œuvre et qui peut être hautement automatisée.

En chromatographie en phase gazeuse, un gaz peut être utilisé pour transporter un mélange à travers un lit de matériau, en utilisant la pression comme force. Par conséquent, le système comporte une source de gaz (réservoir ou générateur de gaz) incluant des régulateurs pour contrôler le débit de gaz. Les gaz vecteurs les plus communément employés sont l'hélium, l'hydrogène et l'azote.

Il vous faut également un four, un injecteur pour l'introduction de l'échantillon, la colonne et un détecteur. L'injection doit être effectuée sous pression. La phase stationnaire est une colonne capillaire, avec différentes modifications de surface intérieure.

Les détecteurs les plus couramment utilisés sont les détecteurs à ionisation de flamme (FID) et les détecteurs à conductivité thermique (TCD).

Les TCD sont par essence universels et peuvent être utilisés pour détecter tout composant autre que le gaz vecteur (tant que leur conductivité thermique est différente de celle du gaz vecteur, à la température du détecteur). Les FID sont sensibles principalement aux hydrocarbures.

Ces dernières années, les spectromètres de masse (MS) sont de plus en plus couramment utilisés avec la CPG. Ils sont hautement efficaces et sensibles, même pour une petite quantité d'échantillon.

Chromatographie liquide (LC)

La chromatographie liquide haute performance (CLHP ou HPLC) est une technique de séparation dans laquelle vous sélectionnez le mode de séparation le plus adéquat, en fonction de la solubilité de l'échantillon et de la façon dont les analytes d'intérêt diffèrent des autres composés ou de la matrice de l'échantillon. En mode de phase inverse (RP), la phase mobile est polaire et la phase stationnaire est apolaire. La principale distinction entre les analytes est leur hydrophobicité et les échantillons doivent être solubles dans l'eau ou dans un solvant organique polaire.

En phase normale (NP), la phase mobile est apolaire tandis que la phase stationnaire est plus polaire. La principale distinction entre les analytes n'est pas leur hydrophobicité. Les échantillons doivent être solubles dans un solvant hydrophobe tel que l'hexane et la phase mobile est un solvant faiblement à modérément polaire.

En mode HILIC, les phases mobiles sont les mêmes que pour la phase inverse, mais avec une puissance d'élution opposée. La principale distinction entre les analytes est leur hydrophobicité et l'échantillon doit être soluble dans un solvant organique polaire ou dans un mélange solvant organique/eau. L'approche traditionnelle pour les composés polaires et hydrophiles utilisait une séparation en phase inverse avec un mécanisme d'appariement d'ions et était appliquée aux analytes ioniques ou potentiellement ioniques. Dans ce cas, la phase mobile contient un tampon, un réactif d'appariement d'ions et un solvant organique polaire. Les réactifs d'appariement d'ions typiques sont : les sulfonates d'alkyle (acide heptanesulfonique, acide octanesulfonique) qui sont utilisées pour les bases, tandis que les amines quaternaires (chlorure de tétrabutylammonium) sont utilisées pour les acides.

Choisir la bonne colonne d'HPLC

La résolution chromatographique est principalement affectée par la sélectivité (α). Modifier la composition de la phase mobile ou la phase stationnaire est le moyen le plus efficace d'optimiser la sélectivité, alors que le diamètre de particules, le diamètre de pores, la longueur de la colonne, la température et la force de la phase mobile ont beaucoup moins d'effet. Par conséquent, si l'on n'obtient pas des résultats satisfaisants ou que l'on ne parvient à aucune rétention, il est préférable de changer pour une autre sélectivité en utilisant un type de colonne différent et/ou une phase mobile différente.

La résolution (Rs ou R) peut être exprimée à l'aide de trois paramètres (k, α et N) qui sont directement liés aux conditions expérimentales. k est le facteur de rétention moyen pour les deux bandes, N est le nombre de plateaux de la colonne et α est le facteur de séparation (ou facteur de sélectivité). Les paramètres k et α sont déterminés par les conditions expérimentales (composition de la phase mobile, chimie de la phase stationnaire et température), tandis que N est affecté par la longueur de la colonne, le diamètre de particules et le diamètre de pores.

Chromatographie liquide (LC)

Choisir le bon format de colonne

Trouver la meilleure configuration de colonne offrant un temps d'analyse minimum avec une efficacité et une résolution élevées. Ajuster les objectifs de la méthode pour vous assurer que le format choisi a la capacité de produire la résolution qui correspond aux objectifs de l'application, par ex. choisir la bonne longueur de colonne, le bon diamètre interne de colonne, les bons diamètres de particules et de pores. Si vous avez besoin de charger une masse importante, une colonne plus grande (tant en longueur qu'en diamètre) est recommandée car elle pourra accueillir une masse plus grande. Si vous travaillez avec des détecteurs traditionnels de types UV, RI, FL etc., les colonnes de 4,6 ou 3,0 mm de D.I. conviennent, mais pour la MS, on recommande généralement un D.I. de colonne de 2 mm, voire inférieur.

Si vous avez une résolution suffisante, il est possible d'accélérer la séparation en augmentant le débit ou en raccourcissant la longueur de la colonne. Les matériaux à base de silice sont résistants physiquement ; ils ne rétrécieront pas et ne gonfleront pas. De plus, ils sont compatibles avec une large gamme de solvants polaires et apolaires, et sont donc souvent le choix initial. La plupart des colonnes à base de silice sont stables à pH 2-7,5 et, historiquement, les matériaux de phase stationnaire à base de polymère ont fourni une meilleure stabilité de colonne à pH extrêmes. Un matériau de phase stationnaire à base de polymère est compressible et peut rétrécir ou gonfler avec certains solvants. Par conséquent, il convient de faire attention si l'on utilise une colonne à base de polymère et que la limite de contre-pression supérieure est inférieure à celle des phases stationnaires à base de silice correspondantes. Les phases à base de silice de haute pureté plus récentes, telles que Purospher STAR, sont stables à pH 1,5-10,5 ; elles comportent des groupes fonctionnels en surface greffés sur une particule de silice de base en de multiples points de fixation via une modification polymérique.

Taille des particules

Les particules de plus petites tailles permettent une efficacité de séparation supérieure et une résolution chromatographique supérieure aux particules de plus grandes tailles. Toutefois, les tailles de particules plus grandes offrent des débits plus élevés avec une contre-pression moindre dans la colonne et sont moins sujettes au colmatage. Pour ces raisons, elles sont plus tolérantes aux effets de la matrice. La gamme de tailles de particules typique va de 3-20 μ m, mais de nouvelles particules de 2 μ m sont disponibles pour maximiser la résolution sur les colonnes Purospher STAR courtes. Une taille de particules de 5 μ m représente le meilleur compromis entre efficacité et contre-pression pour la plupart des applications qui ne sont pas à rendement élevé.

Charge de carbone

Pour les matériaux de phase inverse à base de silice, la charge de carbone indique la quantité de phase greffée fonctionnelle, fixée au matériau de base. Les phases avec des charges de carbone inférieures sont plus faiblement hydrophobes, ce qui peut considérablement réduire les temps de rétention par rapport aux phases avec des charges de carbone plus élevées. Toutefois, une charge de carbone plus élevée donnera une capacité supérieure et souvent une meilleure résolution, particulièrement pour les composés ayant une hydrophobicité similaire. La charge de carbone n'est pas un paramètre pertinent pour les colonnes utilisées en phase normale ou en mode HILIC.

Chromatographie liquide (LC)

Diamètre de pores

Choisir un diamètre de pores suffisamment grand pour envelopper complètement votre molécule cible. Si votre molécule est plus grande que le diamètre de pores, des phénomènes d'exclusion de taille se produiront et il sera difficile voire impossible de la retenir. En général, les matériaux de phase stationnaire avec de petits diamètres de pores ont des surfaces et des capacités supérieures aux matériaux ayant des diamètres de pores plus grands. Une surface supérieure indique typiquement un nombre de pores supérieur, et par conséquent, une capacité totale supérieure. Les surfaces plus petites s'équilibrent plus rapidement, ce qui est important pour les analyses avec élution en gradient. Les diamètres de pores plus grands sont mieux adaptés à une interaction avec les composés de grande taille, tels que les protéines.

Endcapping

Les matériaux de phase stationnaire à base de silice utilisés en chromatographie de phase inverse ont des groupes silanol qui vont interagir avec les composés polaires. Le endcapping de la phase greffée minimise ces interactions secondaires. Choisir des phases endcappées (coiffées) si vous ne voulez pas d'interactions avec les composés polaires. Choisir des phases non-endcappées si vous voulez une sélectivité polaire améliorée, pour une rétention plus forte des composés organiques polaires.

Sélection de la phase mobile - Solvants et tampons

La force du mélange de la phase mobile se mesure par sa capacité à éluer les analytes de la colonne. Elle est généralement contrôlée par la concentration du solvant ayant la force la plus élevée ; par exemple, en HPLC de phase inverse avec des phases mobiles aqueuses, le solvant fort serait le modificateur organique ; en phase normale et en mode HILIC, ce serait le solvant le plus polaire. Il est utile de rappeler qu'il est plus facile de travailler avec des phases greffées cyano qu'avec de la silice pure pour les séparations en phase normale. L'objectif est de trouver la concentration adéquate du solvant fort. Avec de nombreux échantillons, on pourra utiliser une plage de forces de solvants avec les limites de capacité mentionnées ci-dessus. D'autres facteurs (comme le pH) peuvent également affecter la rétention globale des analytes.

Détection

Les détecteurs de fluorescence, électrochimiques et de masse peuvent être utilisés pour l'analyse de traces. Les détecteurs U.V. sont les plus couramment utilisés, car ils constituent une technique de détection robuste, peu onéreuse et polyvalente. La plupart des composés absorbent la lumière, particulièrement à des longueurs d'ondes U.V. faibles. Il est possible d'utiliser un détecteur à barrettes de diodes (DAD pour Diode Array Detector) et permettre ainsi le contrôle de multiples longueurs d'ondes simultanément. L'inconvénient est que les détecteurs U.V. ne sont pas spécifiques d'un analyte et requièrent que l'analyte absorbe plus de lumière que la matrice de l'échantillon à une longueur d'onde donnée.

Vous trouverez de plus amples informations sur ce sujet dans notre "Chrombook".

Spectrométrie de masse (MS)

La spectrométrie de masse est considérée aujourd'hui comme une technique de détection de routine bien établie. Les détecteurs MS peuvent être combinés à diverses techniques de séparation, comme la chromatographie en phase liquide (LC), la chromatographie sur couche mince (TLC ou CCM), la chromatographie en phase gazeuse (GC ou CPG), mais l'association avec la LC est de loin la configuration la plus fréquente. Par rapport aux détecteurs plus simples, c.-à-d. aux détecteurs U.V., à indice de réfraction (RI), de fluorescence (FL), etc., la MS génère des données sur les masses moléculaires et des paramètres structurels détaillés et offre par conséquent la possibilité d'établir une distinction entre les pics en cas de co-élution en mode SIM (Selected Ion Monitoring). Ce dernier réduit les exigences en matière de rétention et de résolution chromatographiques avant détection, toutefois il est toujours mieux d'avoir des pics retenus et complètement séparés afin d'éviter des effets de suppression ou d'accentuation des ions.

Les analyseurs de masse peuvent être quadripolaires, à secteur magnétique, à temps de vol (TOF), à piège à ions ou à résonance cyclotronique ionique. Un analyseur de masse quadripolaire consiste en quatre barres cylindriques parallèles deux à deux auxquelles sont appliqués un courant continu (DC) fixe et des potentiels RF alternatifs. Le système d'HPLC gère des analytes dissous à pression ambiante (760 Torr) et délivre l'échantillon à la MS, où la détection d'échantillons ionisés gazeux est effectuée dans des conditions de vide élevé (10–5–10–6 Torr). Le transfert de la solution d'analyte de la LC à la MS est accompli via une interface. L'interface convertit progressivement l'échantillon en un aérosol, l'ionise et en retire le solvant. Les ions sont ensuite focalisés et passés au milieu du quadripôle. Leur mouvement dépendra des champs électriques, de sorte que seuls les ions ayant un rapport masse/charge (m/z) particulier auront un trajet stable jusqu'au détecteur. La RF varie pour focaliser des ions de m/z différents sur le détecteur et constituer ainsi un spectre de masse.

En fonction des propriétés physiques des molécules et de leur masse moléculaire, différents types d'interfaces sont utilisées, qui diffèrent les unes des autres par la façon dont elles ionisent les molécules et la façon dont la pression est appliquée au cours du procédé. À l'heure actuelle, toutes les techniques d'ionisation courantes opèrent à pression ambiante : à savoir l'ionisation par électronébuliseur (ESI), l'ionisation chimique à pression atmosphérique (APCI), la désorption/ionisation laser assistée par matrice (MALDI) et la photoionisation à pression atmosphérique (APPI) moins fréquente. L'ESI et l'APCI sont de loin les configurations les plus utilisées en LC-MS. Les techniques plus ésotériques, l'ionisation électronique (EI) et l'ionisation chimique (CI) fonctionnent dans des conditions de vide élevé avec l'avantage d'être compatibles avec le couplage GC-MS. Les spectromètres de masse quadripolaires ont couramment deux configurations lorsqu'ils sont utilisés avec la chromatographie liquide, soit sous la forme d'un seul système quadripolaire simple, soit en tandem. Dans ce dernier principe, le spectromètre de masse triple quadripôle permet de réaliser des études de fragmentation ionique (spectrométrie de masse en tandem ou MS/MS).

Spectrométrie de masse (MS)

L'ionisation par électronébuliseur (ESI)

En mode ESI, des solutions liquides de substances chargées ou polaires, délivrées à l'aide d'un système d'HPLC sont nébulisées en utilisant un capillaire métallique ("aiguille de nébulisation") et un gaz nébuliseur (azote) dans la MS. Les gouttelettes ainsi formées sont sèches (désolvatation) et les ions d'analyte isolés volatilisés sont transférés au détecteur. Le stress thermique est très faible, donc les molécules d'analyte ne se décomposent pas. L'ESI ne connaît pas de limite quant à la taille des molécules et convient aux molécules moyennement à fortement polaires, par exemple, aux amines, acides carboxyliques, composés hétéroaromatiques et acides sulfoniques. On utilise l'ESI lorsque des fragmentations ne sont pas souhaitables et que les masses moléculaires des biomolécules doivent être déterminées. L'ESI-MS est bien adaptée à un couplage avec la LC et, à condition que les débits n'excèdent pas 1-2 ml/min maximum, la sensibilité atteignable est très élevée, cependant il est plus commun d'utiliser des débits situés entre 1-500 μl/min.

En solution liquide, les molécules sont soit déjà jonisées, soit deviennent protonées ou déprotonées par des additifs présents dans la solution d'échantillon et la phase mobile. Afin d'obtenir la meilleure sensibilité, les phases mobiles utilisées devraient être préparées à un pH auquel les analytes sont ionisés. Une règle empirique consiste à utiliser un pH neutre à basique (7-9) pour les acides, tandis qu'un pH plus acide (3-4) est recommandé pour les composés basiques. Si les analytes d'intérêt ont de multiples valeurs de pKa et que leur état d'ionisation est susceptible de changer, il est peut-être préférable en termes d'ionisation de l'analyte et de comportement dans la colonne d'utiliser d'autres valeurs de pH. Donc, en fonction du choix du solvant et des additifs, il est possible d'utiliser un mode ESI positif et/ou négatif. Typiquement, le mode positif est appliqué en combinaison avec des molécules plus basiques, tandis que les composés acides sont analysés en mode négatif. De l'acide formique à 0,1 % est couramment ajouté à la phase mobile en mode ESI positif afin d'abaisser le pH (<(3) pour protoner les analytes. Les analytes acides seront neutralisés dans de telles conditions, de sorte que le mode ESI négatif est préféré et qu'un pH de phase mobile plus élevé est recommandé. Des tampons volatils, tels que l'acétate d'ammonium ou le formiate d'ammonium, sont utilisés à un pH compris entre 4,5 et 7 pour déprotoner le/les analyte(s) et pour un pH élévé, il est possible d'utiliser soit le carbonate d'ammonium, soit l'hydroxyde d'ammonium (solution aqueuse d'ammoniac).

Pour l'ESI en modes négatif et positif, il est impératif que tous les solvants et additifs soient volatils afin d'éviter toute contamination du spectromètre de masse et que la force ionique de la phase mobile totale soit adéquate (généralement entre 2-25 mM) afin d'éviter une immobilisation inutile du détecteur pour nettoyage. Les acides forts, tels que l'acide chlorhydrique et l'acide nitrique, sont inutilisables pour deux raisons : ils forment des paires d'ions avec les molécules d'analyte (suppression du signal de l'analyte) et ils affichent des propriétés oxydantes puissantes. L'acide trifluoroacétique (TFA) est un cas à part : il est largement utilisé comme réactif d'appariement d'ions pour améliorer la séparation des peptides ou des protéines en chromatographie liquide. En revanche, le TFA peut provoquer une importante suppression ionique en spectrométrie de masse (principalement en mode ESI négatif) et peut également contaminer le système de LC-MS.

Spectrométrie de masse (MS)

Malheureusement, il n'est pas possible de donner une estimation quantitative de ces effets, ni d'émettre des recommandations générales, car leur ampleur dépend beaucoup du système de MS utilisé. La triéthylamine en tant qu'additif alternatif se comporte de la même façon. Si l'utilisation de TFA est inévitable, un acide faible (tel que l'acide propanoïque) ou de l'isopropanol peut être ajouté à l'éluant pour diminuer l'effet de suppression du signal.

Non seulement les tampons ajustent le pH de l'éluant et entraînent l'ionisation de la molécule cible, mais ils peuvent également former des adduits avec l'analyte. Les adduits [M+tampon], par ex. avec l'ammonium, les alcalis, les halogènes, le formiate ou l'acétate, entraîneront la détection d'un pic supplémentaire dans le spectre de MS; une suppression complète du signal de l'analyte est même possible lorsque la pression de vapeur de l'adduit résultant (principalement avec les alcalis) est réduite de façon importante. En raison de cela et afin de garder la source d'ESI propre, des tampons volatils sont recommandés. Les sels non volatils, tels que les phosphates, les borates, les sulfates et les citrates, précipiteront dans la source de MS, la colmateront et nécessiteront de fastidieuses procédures de nettoyage.

Ionisation chimique à pression atmosphérique (APCI)

Cette technique est complémentaire de l'ESI et également utile pour le couplage LC-MS. Elle ne nécessite pas de phase mobile avec des propriétés conductrices, c'est pourquoi de l'acétone ou des esters d'acide acétique peuvent être utilisés comme solvants, permettant ainsi un couplage de l'APCI avec la chromatographie en phase normale. En mode APCI, la solution d'analyte est vaporisée avant l'ionisation. Ensuite, les molécules de solvant (aqueux-organique, par ex. du méthanol, du propanol, de l'acétonitrile, de l'acétone, etc., combiné avec 2-20 mM d'un tampon organique volatil, tel que l'acide formique ou acétique, l'acétate d'ammonium, le formiate d'ammonium ou la triéthylamine) deviennent ionisées avec une aiguille à effet couronne, leur charge étant ensuite transférée aux molécules d'analyte par transfert ou abstraction de proton. L'APCI convient à l'analyse de substances peu polaires et faiblement ionisables avec un poids moléculaire faible ou moyen (analytes sans groupes fonctionnels acides ou basiques, par ex. hydrocarbures, alcools, aldéhydes, cétones, esters) et est par conséquent complémentaire de l'ESI, à condition que l'échantillon soit stable thermiquement et vaporisable. Des fragmentations sont généralement observées avec l'APCI. On obtient la sensibilité la plus élevée avec l'utilisation d'acétonitrile, de méthanol ou d'eau comme solvant, et lorsque le degré d'ionisation de l'analyte peut être optimisé via le pH de l'éluant. Concernant les débits de l'ESI, un maximum de 1-2 ml/min peut être toléré.

Les réglementations en analyse alimentaire

L'analyse chimique des aliments est un impératif pour garantir l'exactitude de leur étiquetage et protéger les consommateurs contre le frelatage et le faux étiquetage. Bien sûr, de telles tâches ne peuvent être assurées que collectivement, avec la législation alimentaire adéquate, des contrôles accrus par les autorités alimentaires, des études permanentes par les agences de sécurité alimentaire et les universités afin d'améliorer la connaissance des aliments (et de leur transformation), ainsi que par une responsabilité accrue de l'industrie agro-alimentaire. Cette dernière est secondée par les systèmes de gestion de la qualité, tels que l'HACCP, pour éviter et/ou contrôler les dangers chimiques, microbiologiques et physiques de la chaîne d'approvisionnement alimentaire. Des procédures d'assurance qualité comme celles-là nécessitent une analyse chimique tout au long de la chaîne de transformation alimentaire, depuis les matières premières jusqu'au produit alimentaire fini et étiqueté [1]. Afin de veiller à ce qu'un aliment se conforme à une certaine norme minimale, très souvent des normes de qualité d'application obligatoire sont appliquées dans la définition des ingrédients et dans ce que l'aliment doit contenir au minimum, y compris concernant sa composition nutritionnelle [2, 3, 4]. Parfois, ces normes incluent également les procédures analytiques à utiliser. Parmi les exemples de normes de qualité avec une approche globale, citons les "US standards of identity" ou les normes du Codex Alimentarius [2, 3].

Des données nutritionnelles sur les aliments emballés sont nécessaires pour aider les consommateurs à choisir les denrées en fonction de leurs propres besoins alimentaires et pour réduire les maladies liées à l'alimentation [6, 7, 8, 34]. De la même façon, des réglementations sur l'étiquetage décrivent en détails les exigences relatives à l'étiquetage nutritionnel (nutriments, quantités et apports caloriques) figurant sur les emballages alimentaires [5, 6]. Afin de veiller à une déclaration cohérente des éléments nutritifs, le fabricant alimentaire se doit d'effectuer des analyses supplémentaires de nutriments, tels que les sucres, les acides organiques, les alcools de sucre, les graisses et les acides gras, les protéines et le sodium, ainsi que les vitamines et les minéraux [5].

Toutes les mesures décrites ci-dessus pour assurer la sécurité alimentaire, la fourniture d'une nourriture saine et la protection du consommateur contre le frelatage et le faux étiquetage requièrent des données fiables, obtenues par l'analyse chimique des aliments. Des résultats analytiques fiables sont également essentiels pour faciliter les échanges internationaux de produits alimentaires.

Décharge de responsabilité :

"Merck fournit à ses clients des informations et des conseils relatifs aux technologies et aux questions réglementaires en lien avec leurs applications au mieux de ses connaissances et compétences, mais sans obligation ni responsabilité. Les lois et réglementations existantes doivent dans tous les cas être respectées par nos clients. Cela s'applique également au respect des droits de tiers. Nos informations et nos conseils ne dispensent pas nos clients de leur propre responsabilité de vérifier l'adéquation de nos produits avec l'utilisation envisagée."

L'utilisation des systèmes de gestion de la qualité dans les laboratoires et l'accréditation des laboratoires

La fiabilité des données chimiques dépend largement de la façon dont ces données ont été mesurées.

La mise en œuvre d'un système de gestion de la qualité pour les laboratoires est une mesure approuvée en vue de garantir que l'équipement technique et les méthodes analytiques sont adaptés à l'usage prévu et reproductibles [9] et que le personnel est dûment qualifié et expérimenté pour mener à bien ses tâches.

En conséquence, l'accréditation d'un laboratoire selon un système international reconnu est une condition préalable pour l'élaboration de données analytiques fiables et acceptées au plan international [9].

La norme la plus importante pour les laboratoires est la norme internationale ISO/CEI 17025:2005 'Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais' [9, 10] qui est également une des normes les plus importantes pour la mondialisation des échanges commerciaux. Elle aborde les compétences techniques des laboratoires pour effectuer des essais spécifiques et est utilisée dans le monde entier par des organismes d'accréditation des laboratoires comme exigence fondamentale [9, 10]. La norme ISO/CEI 17025:2005 comprend cinq sections principales 'Domaine d'application', 'Références normatives', 'Termes et définitions', 'Exigences relatives au management' et 'Exigences techniques' [9]. La section 'Exigences techniques' inclut les facteurs qui déterminent l'exactitude et la fiabilité des essais et des étalonnages effectués au laboratoire, tels que le personnel, les installations et les conditions ambiantes, les méthodes d'essai et d'étalonnage, la validation des méthodes, l'équipement, la traçabilité du mesurage, l'échantillonnage, la manutention des objets d'essai et d'étalonnage [9].

Règlement de l'UE N° 882/2004 – Conséquences pour l'accréditation des laboratoires d'analyse de denrées alimentaires

Au sein de l'Union européenne, les laboratoires officiels (à savoir les laboratoires qui effectuent l'analyse d'échantillons prélevés lors de contrôles officiels par les autorités alimentaires compétentes de chaque État membre) doivent être accrédités conformément à la norme EN ISO/CEI 17025, comme requis dans le Règlement de l'UE N° 882/2004 [11]. L'accréditation peut toutefois porter sur des essais individuels ou sur un groupe d'essais.

Les laboratoires à façon ou laboratoires tiers doivent être accrédités conformément à cette norme uniquement si les résultats obtenus par ces laboratoires sont des données juridiquement défendables, c.-à-d. que ces données sont utilisées ou sont destinées à être utilisées en cas de litige entre les autorités alimentaires compétentes et un opérateur/fabricant de denrées alimentaires. Toutefois, et c'est une conséquence indirecte de cette réglementation, le marché alimentaire européen n'accepte plus de laboratoire à façon pour les analyses alimentaires qui ne soit pas accrédité [10].

L'accréditation aux États-Unis comme le demande la loi de modernisation de la sécurité alimentaire

En 2011, les États-Unis ont adopté la loi de modernisation de la sécurité alimentaire ou 'Food Safety Modernization Act' (FSMA) [12]. Il s'agit d'un vaste programme de réformes destinées à améliorer la sécurité alimentaire et à éviter le frelatage intentionnel et non intentionnel des aliments au sein de l'ensemble de la chaîne d'approvisionnement, incluant également les laboratoires d'analyses alimentaires. La FSMA est divisée en quatre parties principales. La partie 2 de la FSMA ('Improving capacity to detect food safety problems') traite de la détection des problèmes de sécurité alimentaire sur l'ensemble de la chaîne d'approvisionnement alimentaire. La section 202 comprend des règles visant à s'assurer que les laboratoires d'analyses alimentaires (englobant des laboratoires privés indépendants, des laboratoires étrangers et des laboratoires opérés par des organismes gouvernementaux fédéraux, des États ou locaux) respectent les normes de qualité prescrites.

La FDA doit établir des critères pour l'accréditation des laboratoires et élaborer des normes que les laboratoires doivent respecter pour être accrédités. La FDA n'a pas respecté la date limite statutaire de 2013, mais les responsables de la FDA ont indiqué qu'un groupe de travail était en train d'élaborer un projet de proposition et qu'un projet de règlement devrait être publié début 2016.

Parallèlement, des organismes d'accréditation pour l'accréditation des laboratoires doivent être établis par la FDA [12]. Un registre des organismes d'accréditation rendu publique devra également être constitué par la FDA [12]. Selon la Section 202 de la FSMA, les normes FDA qui doivent être respectées par les laboratoires accrédités stipuleront entre autres que

- les techniques d'échantillonnage appropriées sont utilisées,
- les procédures analytiques doivent être adaptées à l'usage prévu,
- les rapports d'analyses doivent être certifiés.
- un système de qualité interne doit être établi et maintenu,
- une évaluation des réclamations et des procédures de réponse doivent exister et
- les techniciens sont qualifiés par la formation et leur expérience.

Ces exigences correspondent plus ou moins aux demandes figurant dans la norme ISO/CEI 17025 pour l'accréditation des laboratoires et sont donc déjà assez communes pour de nombreux laboratoires de par le monde. Il est prévu que les fabricants/opérateurs alimentaires doivent utiliser les laboratoires accrédités par la FDA au moins pour

- toute demande d'analyse légale ou réglementaire spécifique lorsque l'on traite d'un problème de sécurité alimentaire identifié ou suspecté,
- toute analyse demandée par la FDA concernant un problème de sécurité alimentaire identifié ou suspecté.
- toute analyse pour appuyer l'admission d'une denrée alimentaire importée et
- toute analyse dans le cadre d'une alerte à l'importation qui demande plusieurs tests consécutifs réussis.

À la Section 202, il est également stipulé que les laboratoires accrédités doivent fournir les résultats de leurs essais directement à la FDA [12]. Cette exigence peut être due au fait qu'en raison des autres dispositions de la loi FSMA, le nombre d'échantillons alimentaires va sensiblement augmenter. En revanche, la FDA n'a pas les ressources nécessaires pour faire face à une telle augmentation des échantillons alimentaires à tester. Par conséquent, la FDA rend le fabricant/l'opérateur alimentaire responsable du fait que les échantillons sont testés et "confiés" à une tierce partie, telle qu'un laboratoire d'essais à façon [14].

L'utilisation de méthodes officielles en analyse alimentaire

En analyse alimentaire, c'est surtout la complexité de la matrice alimentaire qui a le plus d'incidence sur la performance et la fiabilité des méthodes et des procédures analytiques utilisées [5]. La matrice alimentaire est constituée principalement de composés chimiques tels que les protéines, les glucides et les lipides affectant considérablement les méthodes analytiques. Par exemple, des aliments à teneur élevée en matières grasses ou en sucre peuvent provoquer différents types d'interférences comparés à des aliments pauvres en graisses ou en sucre [5]. L'application d'étapes d'extraction et de procédures de digestion, bien qu'elle soit une condition préalable pour l'obtention de résultats analytiques fiables, est souvent très longue et comporte également parfois le risque de la formation d'artéfacts [15]. Par conséquent, les méthodes analytiques employées pour l'analyse alimentaire doivent toujours tenir compte des spécificités et de la composition de la matrice alimentaire à analyser.

Plusieurs organisations (scientifiques) à but non lucratif, comme l'AOAC (Association of Analytical Communities), élaborent, standardisent et approuvent des méthodes officielles pour l'analyse alimentaire. Ces méthodes officielles jouent un rôle important dans l'analyse des denrées alimentaires pour veiller à ce que les aliments respectent les exigences légales. En conséquence, il existe par exemple aux États-Unis des dispositions légales demandant l'utilisation d'une méthode analytique spécifique [16]. En outre, ces méthodes officielles permettent la comparaison de résultats entre différents laboratoires qui suivent la même procédure et l'évaluation des résultats obtenus en utilisant des procédures nouvelles ou plus rapides [5].

Les méthodes officielles de l'OMS et de la FAO et le Codex Alimentarius

La Commission du Codex Alimentarius constituée en 1962 par l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO) et l'Organisation mondiale de la Santé (OMS) élabore des normes internationales et des pratiques de sécurité relatives aux denrées alimentaires et aux produits de l'agriculture (ce que l'on appelle le Codex Alimentarius).

Les normes du Codex incluent les méthodes d'analyse du produit correspondant. Le Volume 13 du Codex comprend une liste des méthodes officielles pour l'analyse et l'échantillonnage. Ces méthodes sont classées selon le produit spécifique auquel elles peuvent être appliquées (par exemple, céréales, matières grasses et huiles, lait maternisé, etc.). Il existe également des méthodes qui peuvent être utilisées pour toutes sortes d'aliments, illustrées par la méthode de détection et de quantification de l'édulcorant Cyclamate [18]. Le Codex recommande l'utilisation des méthodes listées en application de la norme ISO/CEI 17025 [18].

Les méthodes du Codex sont élaborées par des organisations internationales travaillant sur un aliment ou un groupe d'aliments et sélectionnées par le Comité du Codex sur les méthodes d'analyse et d'échantillonnage [19]. Au sein de cette sélection, la préférence est donnée aux méthodes d'analyse qui répondent aux critères du Comité du Codex sur les méthodes d'analyse en matière d'exactitude, de précision, de sélectivité, de limites de détection, de sensibilité, etc. La sélection des méthodes tient également compte de la praticabilité et de l'applicabilité dans des conditions normales de laboratoire. Par conséquent, la préférence sera également donnée aux méthodes qui s'appliquent à une utilisation de routine et qui sont applicables uniformément à divers groupes de produits [19]. Il convient de mentionner que la majorité des méthodes analytiques citées dans les normes du Codex sont celles de l'AOAC [22]. Cela est dû au fait que l'AOAC possède un statut d'observateur officiel auprès du Codex Alimentarius depuis sa création et a formulé des suggestions lors de l'élaboration des normes du Codex [22].

Le Comité mixte FAO/OMS d'experts des additifs alimentaires (JEFCA) établit des normes relatives à la pureté des additifs alimentaires. Il publie un recueil des spécifications relatives aux additifs alimentaires en quatre volumes [20]. Les trois premiers volumes présentent les spécifications des additifs alimentaires elles-mêmes par ordre alphabétique, tandis que le dernier volume comprend les méthodes analytiques révisées et mises à jour, les procédures de test et les solutions de laboratoire utilisées par et référencées dans les spécifications. Les spécifications du JECFA incluent des conseils sur les méthodes analytiques qui devraient être utilisées pour les essais selon la spécification JECFA. Dans la mesure du possible, cela est fait par une référence au quatrième volume du recueil qui comprend les méthodes analytiques révisées et mises à jour [20]. Sinon, les procédures de test sont décrites en détails dans les différentes monographies de spécifications.

Les spécifications JECFA ayant été élaborées pour une utilisation mondiale, les méthodes référencées requièrent l'utilisation d'appareillage et d'équipement qui sont disponibles dans la plupart des laboratoires [20]. Selon le JECFA, les méthodes impliquant des techniques ou un équipement développé(es) plus récemment ne seront normalement pas citées tant que ces techniques ne sont pas acceptées internationalement et généralement disponibles à un prix raisonnable. En prenant en compte les avancées en chimie analytique, le JECFA révise les méthodes analytiques de temps en temps. En principe, il est possible de dévier des méthodes JECFA, à condition toutefois que l'utilisation d'une telle autre méthode ou la modification d'une méthode JECFA donne des résultats d'une précision et d'une spécificité équivalentes à celles référencées dans la spécification JECFA correspondante [20].

Méthodes officielles pour l'analyse alimentaire aux États-Unis

La FDA a établi des définitions et des normes alimentaires qui sont publiées dans le *Code of Federal Regulations* 21 CFR 100–169 [2, 21], comprenant des normes d'identité et de qualité. Les normes d'identité ont été définies pour une grande variété de produits alimentaires, établissant spécifiquement les ingrédients qu'un aliment doit contenir à certains niveaux minimum pour les ingrédients onéreux, ainsi qu'à certains niveaux maximum pour les ingrédients bon marché (comme par exemple l'eau). Ces normes spécifient pour la plupart des méthodes analytiques officielles qui sont à utiliser pour l'analyse. Ces méthodes ont été élaborées par des organisations scientifiques internationales, telles que l'AOAC ou par des organisations américaines, telles que par ex. l'AACC (American Association of Cereal Chemists) ou l'AOCS (American Oil Chemists Society).

Le recueil "Official Methods of Analysis" de l'AOAC International contient plus de 3000 méthodes adoptées par l'AOAC applicables à une grande variété de produits alimentaires et autres matériaux [2, 22]. La Section 2.19 du 21 CFR définit les méthodes de l'AOAC comme des "méthodes officielles" qui doivent être utilisées par la FDA au cas où il n'y a aucune méthode analytique décrite dans une réglementation [22, 23]. Par conséquent, la FDA et le Food Safety and Inspection Service (FSIS) du Ministère de l'agriculture des États-Unis (USDA) utilisent les méthodes de l'AOAC pour vérifier si un aliment est conforme à des exigences légales spécifiques, telles que les informations nutritionnelles sur l'étiquetage des denrées alimentaires, la présence ou l'absence de résidus ou de niveaux de résidus indésirables [21]. L'AOAC examine, sélectionne et élabore également des méthodes. Une fois qu'une méthode a été sélectionnée par l'AOAC, elle est soumise à la validation d'un seul laboratoire et à une étude conjointe complète impliquant 8–10 laboratoires [22]. Si ces dernières s'avèrent concluantes et après approbation par le Comité des méthodes officielles de l'AOAC, la méthode AOAC sera publiée dans l'AOAC Compendium and Journal [22].

Le FCC (Food Chemicals Codex) est un recueil contenant des normes relatives à l'identification et à la pureté d'additifs et de produits chimiques alimentaires connus (incluant la stipulation des méthodes analytiques correspondantes) utilisés dans les produits alimentaires soit aux États-Unis, soit internationalement. Bien que les normes FCC aient été élaborées en coopération avec la FDA et l'industrie aux États-Unis et ailleurs dans le monde, le FCC ne fournit pas d'informations à propos du statut réglementaire des additifs et produits chimiques alimentaires [24]. Toutefois, certains pays autres que les États-Unis (par ex. l'Australie, le Canada, la Nouvelle-Zélande) reconnaissent les normes FCC comme des exigences réglementaires pour les additifs alimentaires [24]. Les monographies du FCC comportent des informations à caractère général sur l'utilisation d'un additif alimentaire particulier, des données chimiques, des normes minimales concernant l'identité, la pureté et la qualité de l'additif alimentaire, ainsi que des méthodes d'analyse validées pour vérifier la pureté et la qualité de l'additif alimentaire en question.

Méthodes officielles pour l'analyse alimentaire dans l'UE

Les méthodes officielles existantes au sein de l'UE se trouvent par exemple dans la collection officielle allemande de méthodes d'analyse alimentaire conformément au § 64 de la LFGB (Lebensmittel-und Futtermittelgesetzbuch ou Loi allemande sur les denrées alimentaires et les aliments pour animaux) incluant plus de 1300 procédures analytiques pour l'analyse alimentaire [25, 26]. Des experts issus du contrôle alimentaire, de la science et de l'industrie agro-alimentaire développent des procédures analytiques et évaluent les performances, la fiabilité et la comparabilité de telles méthodes. Ils décident pour quel domaine d'application les méthodes sont destinées à être utilisées. Avant qu'une méthode ne soit incluse dans la Collection officielle, elle est testée statistiquement par un certain nombre de laboratoires au cours d'un test de comparaison inter-laboratoire et standardisée [26].

En Allemagne, la Collection officielle des méthodes du § 64 de la LFGB peut être appliquée sans autre justification [25, 26]. Cependant, si un laboratoire souhaite utiliser une méthode différente à la place, une telle déviation doit être justifiée.

Dans la législation de l'UE, des méthodes officielles sont souvent spécifiées en cas de réglementations spécifiques d'un produit, afin de veiller à ce qu'une certaine norme de qualité alimentaire puisse être préservée. Le "Règlement 2548/91 relatif aux caractéristiques des huiles d'olive et des huiles de grignons d'olive, ainsi qu'aux méthodes d'analyse y afférentes" qui contient un certain nombre de méthodes officielles, en est un exemple [27].

Dans la législation alimentaire de l'UE, cependant, l'approche traditionnelle pour les analyses alimentaires qui prévoit l'utilisation de telles méthodes officielles ou de routine est de plus en plus écartée au profit de l'approche dite des critères de performance.

L'approche des Critères de performance au sein de l'UE

Suite aux avancées de la chimie analytique, le concept de méthodes de routine et de méthodes de référence est de plus en plus supplanté par l'approche dite des Critères de performance qui définit des critères de performance pour la méthode d'analyse et des procédures pour la validation des méthodes de dépistage et de confirmation [11, 28].

Un tel changement de paradigme est examiné dans le Règlement CE N° 882/2004 [28]. Ce Règlement décrit les exigences de principe concernant les méthodes d'échantillonnage et d'analyse telles qu'elles sont menées par les laboratoires officiels des États membres de l'UE. Les laboratoires impliqués dans l'analyse d'échantillons officiels doivent travailler en accord avec des procédures approuvées internationalement (par ex. DIN, CEN, ISO, IUPAC, Codex Alimentarius) ou avec des normes de performance s'appuyant sur des critères et utiliser des méthodes d'analyse qui ont été validées conformément aux méthodes de l'IUPAC (IUPAC Harmonised Guidelines) [11].

Cela se reflète déjà dans les Règlements de l'UE N° 401/2006 [29], 333/2007 [30], 1882/2006 [31] relatifs aux méthodes d'analyse de contaminants tels que les nitrates, les métaux lourds, le benzo(a)pyrène et le 3-MCPD. Alors que ces règlements décrivent en détails les procédures de prélèvement d'échantillon (exigences concernant le personnel, le nombre d'échantillons par lot, les précautions à prendre, etc.), ils n'incluent pas de recommandations (fortes) concernant les méthodes d'analyse, mais des exigences spécifiques relatives aux critères de performance, tels que la précision, le taux de recouvrement, l'incertitude de mesure etc. sont définies et doivent être respectées par les méthodes d'analyse validées utilisées. Des exigences concernant le système de gestion de la qualité du laboratoire devant être appliqué sont également incluses.

Pour les résidus pharmacologiquement actifs de médicaments vétérinaires autorisés et non autorisés, par ex. certains antibiotiques (comme le chloramphénicol) ou certaines substances ayant un effet anabolisant (par ex. le Clenbutérol), les méthodes analytiques peuvent être sélectionnées par le laboratoire correspondant, mais doivent également être validées et répondre aux critères de performance tels qu'ils sont énoncés dans la Décision de l'UE N° 2002/657 [32, 33]. Le laboratoire lui-même doit respecter les normes de qualité comme le demande le Règlement de l'UE N° 882/2004. Toutefois, les laboratoires nationaux de référence élaborent et valident des méthodes d'analyse adaptées qui peuvent être utilisées pour l'analyse des résidus de médicaments vétérinaires dans les aliments, tel que le décrit la législation de l'UE applicable [33].

Les mesures décrites ci-dessus visent à assurer la fiabilité des résultats analytiques de l'analyse alimentaire. Dans la compilation ci-dessous, vous trouverez des descriptions d'applications analytiques pour l'analyse alimentaire qui pourront contribuer à la fiabilité des données analytiques en simplifiant les procédures de préparation d'échantillon.

Bibliographie et liens utiles

La législation alimentaire est une législation très dynamique. Par conséquent, les réglementations alimentaires changent fréquemment et sont souvent modifiées. Les liens à la législation alimentaire communiqués peuvent dans certains cas ne pas fournir la version la plus à jour de la réglementation. La législation la plus à jour se trouve sur les différents sites Internet gouvernementaux.

[1]	"Règlement (EU) N° 852/2004 du Parlement européen et du Conseil relatif à l'hygiène des denrées alimentaires". Journal officiel de l'Union européenne, N° L139/1, 2004 et amendements ultérieurs.
[:	2]	http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004R0852:FR:NOT "United States Government Regulations and Standards", Nielssen, S.S. in "Food Analysis", Springer US, USA, 4e édition, 2010, 15-33.
Į.	3]	Standards of the Codex Alimentarius, www.codexalimentarius.org
	4]	Deutsches Lebensmittelbuch,
	., 5]	"Introduction to food analysis" Nielsen, S.S. in "Food Analysis, Springer US, USA, 4e édition, 2010, 5-13.
	6]	"Règlement (UE) N° 1169/2011 du Parlement européen et du Conseil concernant l'information des consommateurs sur les denrées alimentaires", Journal officiel de l'Union européenne N° L304/18, 2011. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2011:304:0018:0063:FR:PDF
[7]	"Obésité et surpoids", Aide-mémoire N° 311, Organisation mondiale de la Santé, 2011.
[8	8]	"Diabète", Aide-mémoire N° 312, Organisation mondiale de la Santé, 2011.
[9	9]	Accreditation – ISO/IEC 17025, Kaus, R. in "Quality Assurance in Analytical Chemistry", Springer-Verlag, Allemagne 2010.
[10]	"Akkreditierung von amtlichen und nichtamtlichen Prüflaboratorien im Bereich Lebensmittel und
		Futtermittel", Kirchhoff, E., in "Handbuch für Lebensmittelchemiker und –Technologen", Springer, Allemagne, 3e édition, 2010, 225-251.
[11]	"Règlement (CE) N° 882/2004 du Parlement européen et du Conseil du 29 avril 2004 relatif aux contrôles officiels effectués pour s'assurer de la conformité avec la législation sur les aliments pour animaux et les denrées alimentaires et avec les dispositions relatives à la santé animale et au bien-être des animaux", Journal officiel de l'Union européenne, N° L165/1, 2004, et mises à jour ultérieures.
		http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004R0882:FR:NOT
[12]	"FDA Food Safety Modernization Act", 21 USC 2201, Déc. 2015.
_		En ligne: https://www.gpo.gov/fdsys/pkg/PLAW-111publ353/pdf/PLAW-111publ353.pdf
Į.	14]	"FSMA and labs", Paez, V., Food Quality Magazine, Déc./Jan. 2012, USA, Wiley Periodicals,
_		extrait de http://www.foodquality.com/view/0/issueArchiveList.html
[15]	"Quantitative determination of beta-carotene stereoisomers in carrot juices and vitamin supplemented (ATBC) drinks" Marx, M. et al. Food Chemistry, 70, 2000, 403–408.
	1	"United States Government Regulations and Standards", Nielssen, S.S. in "Food Analysis, Springer US, USA, 4e édition, 2010, 15–33.
	16]	Normes d'identité
	17]	"Comprendre le Codex Alimentarius", Secrétariat du programme mixte FAO/OMS sur les normes alimentaires, FAO, Rome, 3 ^e édition, 2006.
[18]	"Méthodes d'analyse et d'échantillonnage recommandées, parties A et B", Codex Standard 234-1999, Codex Alimentarius, Secrétariat du programme mixte FAO/OMS sur les normes alimentaires, FAO, Rome, 2011.
[19]	"Manuel de procédure", Commission du Codex Alimentarius, Secrétariat du programme mixte FAO/OMS sur les normes alimentaires, FAO, Rome, 20e édition, 2011.
Ţ:	20]	"Recueil des spécifications relatives aux additifs alimentaires", Comité mixte FAO/OMS d'experts sur les additifs
	•	alimentaires, FAO, Rome 2006.
[:	21]	"Food labelling", Curtis P. & Dunlap, W. in "Guide to food laws and regulations"
Ī		Blackwell Publishing, USA, 2005, 85-111.
[:	22]	Page d'accueil de l'AOAC International, http://www.aoac.org/
[:	23]	Code of Federal Regulations (CFR), http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm

[24]	Food Chemicals Codex, United States Pharmacopeia, 8e édition, 2013.
[25]	§ 64 Lebensmittel und Futtermittelgesetzbuch, Bundesgesetzblatt I, 1770.2012 et mises à jour ultérieures.
	http://www.gesetze-im-internet.de/lfgb/
[26]	"Official collection of methods of Analysis", Bureau fédéral allemand de la protection des consommateurs et
	de la sécurité alimentaire, 2013.
	http://www.bvl.bund.de/EN/09_Laboratories/01_Tasks/04_official_collection_methods_analysis/official_colle
	ction_methods_analysis_node.html
[27]	Règlement (CEE) N° 2568/91 du 11 juillet 1991 relatif aux caractéristiques des huiles d'olive et des huiles de
	grignons d'olive, ainsi qu'aux méthodes d'analyse y afférentes, Journal officiel de l'Union européenne,
	N° L 248, 1991 et mises à jour ultérieures.
	http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1991R2568:20081001:FR:PDF
[28?]	"und –Technologen"., Springer, Allemagne, 3 ^e édition, 2010, 1–29.
[29]	Règlement N° 401/2006 du 23 février 2006 portant fixation des modes de prélèvement d'échantillons et des
	méthodes d'analyse pour le contrôle officiel des teneurs en mycotoxines des denrées alimentaires, Journal
	officiel de l'Union européenne, N° L 70/12, 2006 et mises à jour ultérieures.
[00]	http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2006:070:0012:0034:FR:PDF
[30]	Règlement (CE) N° 333/2007 du 28 mars 2007 portant fixation des modes de prélèvement d'échantillons et
	des méthodes d'analyse pour le contrôle officiel des teneurs en plomb, en cadmium, en mercure, en étain
	inorganique, en 3-MCPD et en benzo(a)pyrène dans les denrées alimentaires, Journal officiel de l'Union européenne, N° L 88/29, 2007 et mises à jour ultérieures.
	http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2007:088:0029:0038:FR:PDF
[31]	Règlement (CE) N° 1882/2006 du 19 décembre 2006 portant fixation des méthodes de prélèvement et
[31]	d'analyse d'échantillons pour le contrôle officiel des teneurs en nitrates de certaines denrées alimentaires,
	Journal de l'Union européenne N° L 364/25, 2006 et mises à jour ultérieures.
	http://http://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32006R1882&from=en
[32]	Décision de la Commission du 12 août 2002 portant modalités d'application de la directive 96/23/CE du
	Conseil en ce qui concerne les performances des méthodes d'analyse et l'interprétation des résultats, Journal
	officiel des Communautés européennes N° L 221/8, 2002.
	http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2002:221:0008:0036:FR:PDF
[33]	Directive 96/23/CE du Conseil du 29 avril 1996 relative aux mesures de contrôle à mettre en œuvre à l'égard
	de certaines substances et de leurs résidus dans les animaux vivants et leurs produits, Journal officiel des
	Communautés européennes, N° L 125/10, 1996 et mises à jour ultérieures.
	http://http://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:31996L0023&from=FR
[34]	Règlement (CE) N° 1924/2006 du Parlement européen et du Conseil du 20 décembre 2006 concernant les
	allégations nutritionnelles et de santé portant sur les denrées alimentaires
	http://http://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:02006R1924-20121129&from=FR

Union européenne:

EUR-Lex:

http://eur-lex.europa.eu/homepage.html?locale=fr

Ce site Internet vous permet de faire une recherche dans le Journal officiel de l'UE et d'avoir accès au texte des règlements (également accessibles en versions consolidées).

Commission européenne :

http://ec.europa.eu/food/food/index_en.htm

Autorité européenne de sécurité des aliments (EFSA)

http://www.efsa.europa.eu/fr/

États-Unis d'Amérique:

Page d'accueil de la FDA (Food)

http://www.fda.gov/Food/default.htm

Page d'accueil de l'US-DA (United States Department of Agriculture ou Ministère de l'agriculture des États-Unis. L'US-DA est responsable de la sécurité des aliments issus de l'agriculture.

http://www.usda.gov/wps/portal/usda/usdahome?navid=FOOD_SAFETY

PB7302FRWE

Fabriqué par Merck KGaA, 64271 Darmstadt, Allemagne www.merckmillipore.com/food-analysis

Distribué par EMD Millipore Corporation, 290 Concord Road, Billerica, MA 01821, États-Unis

