Millipore Sigma Vibrant Logo
 

calcium


1678 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (1,063)
  • (130)
  • (49)
  • (15)
  • (7)
  • Show More

Application Type

  • (9)
  • (3)
  • (3)

Field of Activity

  • (6)
  • (3)
  • (2)
  • (2)
  • (2)
  • Show More

Parameter

  • (12)

Sample

  • (3)
  • (2)
  • (2)
  • (1)
  • (1)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Human calcium/calmodulin-dependent serine protein kinase regulates the expression of p21 via the E2A transcription factor. 19125693

    CASK (calcium/calmodulin-dependent serine protein kinase) is a kind of scaffolding protein that recruits or organizes other proteins at the plasma membrane to co-ordinate signal transduction pathways within the cytoplasm and nucleus. We have previously found that hCASK (human CASK) binds Id1 (inhibitor of DNA binding 1) through hCASK's GUK (guanylate kinase) domain and inhibits cell growth, probably via interactions with Id1. Overexpression of hCASK resulted in a reduced rate of cell growth, although inhibition of CASK via RNAi (RNA interference) promoted cell proliferation in ECV304 cells. This study revealed that hCASK regulates the protein and mRNA level of p21(wafi/cip1) (referred to throughout as p21), and activated the expression of p21 in a time-dependent manner. Two E-boxes in the proximal region at the TSS (transcription start site) play key roles in regulating hCASK-mediated p21 expression. We suggest that E2A (E12 and E47), a representative of the E proteins that binds the E-box elements, is a participant in the mediation of p21 expression by hCASK. The results of the present study suggest that hCASK regulation of cell growth might involve p21 expression, and that the bHLH (basic helix-loop-helix) transcription factor E2A probably participates in hCASK regulation of p21 expression. From these findings, we propose a novel proliferation signalling pathway mediated by hCASK.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Calcium/calmodulin-dependent protein kinase II and calmodulin: regulators of the meiotic spindle in mouse eggs. 9882483

    Elevation of intracellular free calcium causes egg activation by initiating a cascade of interacting signaling pathways that, in unison, act to remodel the cytoplasmic compartment and the nuclear compartment of the egg. We show here that calcium/calmodulin-dependent protein kinase II (CaM kinase II) is tightly associated with the meiotic spindle and that 5 min after egg activation there is a transient, tight association of calmodulin (colocalized with CaM kinase II) on the meiotic spindle. These correlative observations caused us to test whether activation of CaM kinase II mediated the chromosomal transit into an anaphase configuration. We demonstrate that calcium and calmodulin, at physiological levels, along with ATP were capable of driving the spindle (with its associated CaM kinase II) into an anaphase configuration in a permeabilized egg system. The transit into anaphase was dependent on the presence of both calcium and calmodulin and occurred normally when they were present at a ratio of 4 to 1. Peptide and pharmacologic inhibitors of CaM kinase II blocked the transit into anaphase, both in the permeabilized egg system and in living eggs (inhibitors of protein kinase C did not block the transit into anaphase). Using a biochemical approach we confirm that CaM kinase II increases in activity 5 min after egg activation and that a second increase occurs 45 min after activation at the approximate time that the contractile ring of the second polar body is constricting. This corresponds to the approximate time when calmodulin and CaM kinase II colocalize at several points in the activated egg including the region containing midzone microtubules. CaM kinase II appears localized on midzone microtubules as soon as they form and may have a role in specifying the position of the contractile ring of the second polar body.
    Document Type:
    Reference
    Product Catalog Number:
    05-173
    Product Catalog Name:
    Anti-Calmodulin Antibody
  • Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. 23761910

    The core motor symptoms of Parkinson's disease (PD) are attributable to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed a major factor in PD pathogenesis. Previous work has shown that activity-dependent calcium entry through L-type channels elevates perinuclear mitochondrial oxidant stress in SNc dopaminergic neurons, providing a potential basis for their selective vulnerability. What is less clear is whether this physiological stress is present in dendrites and if Lewy bodies, the major neuropathological lesion found in PD brains, exacerbate it. To pursue these questions, mesencephalic dopaminergic neurons derived from C57BL/6 transgenic mice were studied in primary cultures, allowing for visualization of soma and dendrites simultaneously. Many of the key features of in vivo adult dopaminergic neurons were recapitulated in vitro. Activity-dependent calcium entry through L-type channels increased mitochondrial oxidant stress in dendrites. This stress progressively increased with distance from the soma. Examination of SNc dopaminergic neurons ex vivo in brain slices verified this pattern. Moreover, the formation of intracellular α-synuclein Lewy-body-like aggregates increased mitochondrial oxidant stress in perinuclear and dendritic compartments. This stress appeared to be extramitochondrial in origin, because scavengers of cytosolic reactive oxygen species or inhibition of NADPH oxidase attenuated it. These results show that physiological and proteostatic stress can be additive in the soma and dendrites of vulnerable dopaminergic neurons, providing new insight into the factors underlying PD pathogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Calcium hydroxide regulates bone sialoprotein gene transcription in human osteoblast-like Saos2 cells. 21467818

    Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. Calcium hydroxide (Ca(OH)(2)) is a basic salt that has been widely used for a variety of applications in dentistry, due to its antimicrobial effects and its capability of inducing hard tissue formation. However, details of the mechanism involved in the mineralization induced by Ca(OH)(2) are still unclear. In the present study, Ca(OH)(2) (0.4 mM) was found to increase the levels of BSP and Runx2 mRNA at 3 h in human osteoblast-like Saos2 cells. Transient transfection assays were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of Saos2 cells with Ca(OH)(2) (0.4 mM) increased the luciferase activities of the constructs between -60LUC and -927LUC at 12 h. Gel shift analysis showed that Ca(OH)(2) (0.4 mM) increased the binding of nuclear protein to CRE1, CRE2 and FRE. Antibodies against CREB1, c-Fos, c-Jun, JunD, Fra2 and P300 disrupted the formation of the CRE1- and CRE2-protein complexes, and antibodies against Dlx5, Msx2, Runx2 and Smad1 disrupted the formation of the FRE-protein complex. These findings demonstrate that Ca(OH)(2) stimulates BSP transcription by targeting the CRE1, CRE2 and FRE elements in the human BSP gene promoter.
    Document Type:
    Reference
    Product Catalog Number:
    AB5728
  • Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. 15087302

    Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated.Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts.(45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections.The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB427
    Product Catalog Name:
    Anti-Dihydropyridine-sensitive Calcium Channel α 1 Subunit Antibody, clone 1a
  • Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene ... 22493455

    Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model system to study the effect of CaM gene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated. We show that CaM is essential for survival of vertebrate cells as they die in the absence of CaM expression. Reversal of CaM repression or ectopic expression of HA-tagged CaM rescued the cells. Cells exclusively expressing HA-CaM with impaired individual calcium binding domains as well as HA-CaM lacking the ability to be phosphorylated at residues Tyr(99)/Tyr(138) or trimethylated at Lys(115) survived and grew well. CaM mutated at both Ca(2+) binding sites 3 and 4 as well as at both sites 1 and 2, but to a lesser degree, showed decreased ability to support cell growth. Cells expressing CaM with all calcium binding sites impaired died with kinetics similar to that of cells expressing no CaM. This system offers a unique opportunity to analyze CaM structure-function relationships in vivo without the use of pharmacological inhibitors and to analyze the function of wild type and mutated CaM in modulating the activity of different target systems without interference of endogenous CaM.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. 12234763

    Calcium (Ca) is the key regulator of cardiac contraction during excitation-contraction (E-C) coupling. However, differences exist between the amount of Ca being transported into the myocytes upon electrical stimulation as compared to Ca released from the sarcoplasmic reticulum (SR). Moreover, alterations in E-C coupling occur in cardiac hypertrophy and heart failure. In addition to the direct effects of Ca on the myofilaments, Ca plays a pivotal role in activation of a number of Ca-dependent proteins or second messengers, which can modulate E-C coupling. Of these proteins, calmodulin (CaM) and Ca-CaM-dependent kinase II (CaMKII) are of special interest in the heart because of their role of modulating Ca influx, SR Ca release, and SR Ca uptake during E-C coupling. Indeed, CaM and CaMKII may be associated with some ion channels and Ca transporters and both can modulate acute cellular Ca handling. In addition to the changes in Ca, CaM and CaMKII signals from beat-to-beat, changes may occur on a longer time scale. These may occur over seconds to minutes involving phosphorylation/dephosphorylation reactions, and even a longer time frame in altering gene transcription (excitation-transcription (E-T) coupling) in hypertrophic signaling and heart failure. Here we review the classical role of Ca in E-C coupling and extend this view to the role of the Ca-dependent proteins CaM and CaMKII in modulating E-C coupling and their contribution to E-T coupling.
    Document Type:
    Reference
    Product Catalog Number:
    07-743