Millipore Sigma Vibrant Logo
 

lens


128 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Lens epithelial cell apoptosis initiates diabetic cataractogenesis in the Zucker diabetic fatty rat. 20162295

    BACKGROUND: It has been suggested that damage of lens epithelial cell (LEC) may play an important role in cataract formation. Nitric oxide is involved in cataract development. Here, we investigated the relationship between LEC damage and iNOS expression in the Zucker diabetic fatty (ZDF) rat. METHODS: At 21 weeks of age, the eyes were enucleated and the lens opacity was then examined. Apoptosis were detected by TUNEL assay, and the expression of iNOS and NF-kappaB activation were studied by immunohistochemistry and southwestern histochemistry respectively. RESULTS: In 21-week-old male ZDF rats, cataract was developed, TUNEL-positive LECs were markedly increased, and the expression levels of iNOS mRNA and protein were significantly upregulated. The expression pattern of iNOS was closely correlated with apoptotic change of LECs. In addition, advanced glycation end products (AGEs) were accumulated in cytoplasm of LECs. Activated NF-kappaB was mainly detected in nucleus of LECs. CONCLUSIONS: The higher expressions of AGEs, NF-kappaB and iNOS in LECs of diabetic rats suggest that these factors are involved in apoptosis of LEC alterations related to diabetic cataract.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3026
    Product Catalog Name:
    Anti-NFκB Antibody, p65 subunit, active subunit, clone 12H11
  • Lens induction requires attenuation of ERK signaling by Nf1. 21233129

    Aphakia (lack of lens) is a rare human congenital disorder with its genetic etiology largely unknown. Even in model organisms, very few mutations are known to result in such a drastic ocular defect. In this study, we have shown that homozygous deletion of Nf1, the Ras GTPase gene underlying human neurofibromatosis type 1 syndrome, causes lens dysgenesis in mouse. Although early lens specification proceeded normally in Nf1 mutants, lens induction was disrupted due to deficient cell proliferation. Further analysis showed that extracellular signal-regulated kinase (ERK) signaling was initially elevated in the invaginating lens placode, but by the lens vesicle stage, ERK phosphorylation was significantly reduced. Only after intraperitoneal treatment of U0126, an inhibitor of ERK phosphorylation, was lens development restored in Nf1 mutants. Hyperactive Ras-mitogen-activated protein kinase (MAPK) signaling is known to cause neuro-cardiofacial-cutaneous (NCFC) syndromes in humans. As a member of NCFC family genes, Nf1 represents the first example that attenuation of Ras-MAPK kinase signaling pathway is essential for normal lens development.
    Document Type:
    Reference
    Product Catalog Number:
    AB5603
    Product Catalog Name:
    Anti-Sox2 Antibody
  • Lens regeneration in axolotl: new evidence of developmental plasticity. 23244204

    Among vertebrates lens regeneration is most pronounced in newts, which have the ability to regenerate the entire lens throughout their lives. Regeneration occurs from the dorsal iris by transdifferentiation of the pigment epithelial cells. Interestingly, the ventral iris never contributes to regeneration. Frogs have limited lens regeneration capacity elicited from the cornea during pre-metamorphic stages. The axolotl is another salamander which, like the newt, regenerates its limbs or its tail with the spinal cord, but up until now all reports have shown that it does not regenerate the lens.Here we present a detailed analysis during different stages of axolotl development, and we show that despite previous beliefs the axolotl does regenerate the lens, however, only during a limited time after hatching. We have found that starting at stage 44 (forelimb bud stage) lens regeneration is possible for nearly two weeks. Regeneration occurs from the iris but, in contrast to the newt, regeneration can be elicited from either the dorsal or the ventral iris and, occasionally, even from both in the same eye. Similar studies in the zebra fish concluded that lens regeneration is not possible.Regeneration of the lens is possible in the axolotl, but differs from both frogs and newts. Thus the axolotl iris provides a novel and more plastic strategy for lens regeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3510
    Product Catalog Name:
    Anti-BrdU Antibody, clone BU-1
  • Lens extrusion from Laminin alpha 1 mutant zebrafish. 24526906

    We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant, lama1 (a69/a69). Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of laminin α1 in lens development, a detailed analysis of the lens defects seen in these mutants was not reported. In the present study, we analyze the lenticular anomalies seen in the lama1 (a69/a69) mutants and show that the lens defects result from the anterior extrusion of lens material from the eye secondary to structural defects in the lens capsule and developing corneal epithelium associated with basement membrane loss. Our analysis provides further insights into the role of the lens capsule and corneal basement membrane in the structural integrity of the developing eye.
    Document Type:
    Reference
    Product Catalog Number:
    AB3071
    Product Catalog Name:
    Anti-Aquaporin 0 Antibody
  • miRNAs in newt lens regeneration: specific control of proliferation and evidence for miRNA networking. 20711456

    Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation.We have performed gain- and loss-of-function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells. On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide new insights on their function.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3510
    Product Catalog Name:
    Anti-BrdU Antibody, clone BU-1
  • TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. 28392351

    Age-related cataract is among the most common chronic disorders of ageing and the apoptosis of lens epithelial cells contributes to non-congenital cataract development. We amid to explore the role of TUG1 and miR-421 in the age-related cataract.The expression level of TUG1, miR-421 and caspase-3 were detected by RT-qPCR. The apoptotic-related protein, caspase-3, Bax and blc-2 were analyzed by western blot. We performed ultraviolet (UV) irradiation to induce SAR01/04 cell apoptosis which was analyzed by flow cytometry. RIP pull-down and luciferase reporter assay were used to verified the combination and regulating among TUG1, miR-421 and caspase-3.Here, we observed that the expression level of TUG1 and caspase-3 in the anterior lens capsules of age-related cataract were significantly higher and miR-421 was significantly lower than that in the normal anterior lens capsules. The apoptosis-related protein, caspase-3, Bax and blc-2 were abnormal expression in the anterior lens capsules of age-related cataract tissue. Our data showed that the expression level of TUG1 and caspase-3 and cell apoptosis rate in SAR01/04 cells treated with UV irradiation was remarkably higher than that in the control. TUG1 negatively regulated miR-421 expression and promoted UV irradiation-induced SAR01/04 cell apoptosis. However, miR-421 inhibitor and pcDNA-caspase-3 could reverse the action of the SRA01/04 cell apoptosis by si-TUG1, which suggested TUG1 promoted UV irradiation-induced apoptosis through downregulating miR-421 expression. Furthermore, this study confirmed TUG1 could been in combination with miR-421, and TUG1 and caspase-3 were both a directly target of miR-421.TUG1 modulated lens epithelial cell apoptosis through miR-421/caspase-3 axis. These findings will offer a novel insight into the pathogenesis of cataract.
    Document Type:
    Reference
    Product Catalog Number:
    17-701
    Product Catalog Name:
    EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Activated Ras alters lens and corneal development through induction of distinct downstream targets. 20105280

    Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF) signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas.Ras transgenic lenses and corneal epithelial cells showed increased proliferation with concomitant increases in cyclin D1 and D2 expression. This initial increase in proliferation is sustained in the cornea but not in the lens epithelial cells. Coincidentally, cdk inhibitors p27Kip1 and p57Kip2 were upregulated in the Ras transgenic lenses but not in the corneas. Phospho-Erk1 and Erk2 levels were elevated in the lens but not in the cornea and Spry 1 and Spry 2, negative regulators of Ras-Raf-Erk signaling, were upregulated more in the corneal than in the lens epithelial cells. Both lens and corneal differentiation programs were sensitive to Ras activation. Ras transgenic embryos showed a distinctive alteration in the architecture of the lens pit. Ras activation, though sufficient for upregulation of Prox1, a transcription factor critical for cell cycle exit and initiation of fiber differentiation, is not sufficient for induction of terminal fiber differentiation. Expression of Keratin 12, a marker of corneal epithelial differentiation, was reduced in the Ras transgenic corneas.Collectively, these results suggest that Ras activation a) induces distinct sets of downstream targets in the lens and cornea resulting in distinct cellular responses and b) is sufficient for initiation but not completion of lens fiber differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    AB5475
    Product Catalog Name:
    Anti-Prox 1 Antibody
  • Loss of Dlg-1 in the mouse lens impairs fibroblast growth factor receptor signaling. 24824078

    Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. 21945075

    Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.
    Document Type:
    Reference
    Product Catalog Number:
    04-1109
  • Protein kinase C epsilon activates lens mitochondrial cytochrome c oxidase subunit IV during hypoxia. 18070622

    Protein kinase C (PKC) isoforms have been identified as major cellular signaling proteins that act directly in response to oxidation conditions. In retina and lens two isoforms of PKC respond to changes in oxidative stress, PKCgamma and PKCepsilon, while only PKCepsilon is found in heart. In heart the PKCepsilon acts on connexin 43 to protect from hypoxia. The presence of both isoforms in the lens led to this study to determine if lens PKCepsilon had unique targets. Both lens epithelial cells in culture and whole mouse lens were examined using PKC isoform-specific enzyme activity assays, co-immunoprecipitation, confocal microscopy, immunoblots, and light and electron microscopy. PKCepsilon was found in lens epithelium and cortex but not in the nucleus of mouse lens. The PKCepsilon isoform was activated in both epithelium and whole lens by 5% oxygen when compared to activity at 21% oxygen. In hypoxic conditions (5% oxygen) the PKCepsilon co-immunoprecipitated with the mitochondrial cytochrome c oxidase IV subunit (CytCOx). Concomitant with this the CytCOx enzyme activity was elevated and increased co-localization of CytCOx with PCKvarepsilon was observed using immunolabeling and confocal microscopy. In contrast, no hypoxia-induced activation of CytCOx was observed in lenses from the PKCepsilon knockout mice. Lens from 6-week-old PKCepsilon knockout mice had a disorganized bow region which was filled with vacuoles indicating a possible loss of mitochondria but the size of the lens was not altered. Electron microscopy demonstrated that the nuclei of the PCKepsilon knockout mice were abnormal in shape. Thus, PKCepsilon is found to be activated by hypoxia and this results in the activation of the mitochondrial protein CytCOx. This could protect the lens from mitochondrial damage under the naturally hypoxic conditions observed in this tissue. Lens oxygen levels must remain low. Elevation of oxygen which occurs during vitreal detachment or liquification is associated with cataracts. We hypothesize that elevated oxygen could cause inhibition of PKCepsilon resulting in a loss of mitochondrial protection.
    Document Type:
    Reference
    Product Catalog Number:
    06-991
    Product Catalog Name:
    Anti-PKCε Antibody