Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Linear Formula:
Y2O3
CAS Number:
Molecular Weight:
225.81
UNSPSC Code:
12352303
eCl@ss:
38160202
PubChem Substance ID:
NACRES:
NA.23
EC Number:
215-233-5
MDL number:
Product Name
Yttrium(III) oxide, 99.999% trace metals basis
SMILES string
O=[Y]O[Y]=O
InChI
1S/3O.2Y
InChI key
SIWVEOZUMHYXCS-UHFFFAOYSA-N
assay
99.999% trace metals basis
form
powder
greener alternative product characteristics
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
mp
2410 °C (lit.)
density
5.01 g/mL at 25 °C (lit.)
greener alternative category
Quality Level
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and is intended for Molecular Solar Thermal Energy Storage Systems (MOST). Click here for more information.
Application
- Yttrium(III) oxide: Employed extensively in the manufacture of yttrium aluminum garnets, which are used in various laser systems. It also serves as a host lattice for phosphor materials used in white LED lighting. Additionally, yttrium oxide is utilized in making glass with high temperature and shock resistance, which is essential for aerospace applications (Sigma-Aldrich, CAS 1314-36-9).
Storage Class
13 - Non Combustible Solids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Jiangli Wang et al.
ChemSusChem, 5(7), 1307-1312 (2012-04-03)
Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare
Cheol Jang et al.
Optics express, 20(3), 2143-2148 (2012-02-15)
We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm
Eun-Ok Oh et al.
Advanced materials (Deerfield Beach, Fla.), 24(25), 3373-3377 (2012-06-01)
An extremely thin bilayer electrolyte consisting of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is successfully fabricated on a sintered NiO-YSZ substrate. Major processing flaws are effectively eliminated by applying local constraints to YSZ nanoparticles, and excellent open circuit voltage
Masoud Allahkarami et al.
Dental materials : official publication of the Academy of Dental Materials, 27(12), 1279-1284 (2011-10-14)
Chipping failures observed clinically in bilayer systems of porcelain and zirconia restorations should be coupled with a monoclinic to tetragonal phase transformation in the zirconia layer due to the high compressive stress. Phase transformations were mapped using 2D micro X-ray
Bipin Kumar Gupta et al.
Small (Weinheim an der Bergstrasse, Germany), 8(19), 3028-3034 (2012-07-19)
Highly luminescent-paramagnetic nanophosphors have a seminal role in biotechnology and biomedical research due to their potential applications in biolabeling, bioimaging, and drug delivery. Herein, the synthesis of high-quality, ultrafine, europium-doped yttrium oxide nanophosphors (Y(1.9)O(3):Eu(0.1)(3+)) using a modified sol-gel technique is
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service