Millipore Sigma Vibrant Logo
Atención: Nos hemos mudado. Los productos Merck Millipore ya no pueden adquirirse en MerckMillipore.comMás información
 

tfa


333 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (150)
  • (61)
  • (44)
  • (16)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells. 17163435

    Embryonic stem (ES) cells can differentiate into vascular smooth muscle cells (SMCs), but differences in protein composition, function and behaviour between stem cell-derived and mature SMCs remain to be characterized. Using differential in gel electrophoresis (DIGE) and MS, we identified 146 proteins that differed between ES cell-derived SMCs (esSMCs) and aortic SMCs, including proteins involved in DNA maintenance (higher in esSMCs), cytoskeletal proteins and calcium-binding proteins (higher in aortic SMCs). Notably, esSMCs showed decreased expression of mitochondrial, but a compensatory increase of cytosolic antioxidants. Subsequent experiments revealed that mitochondrial-derived reactive oxygen species (ROS) were markedly increased in esSMCs. Despite a three-fold rise in glutathione (GSH) reductase activity, esSMCs had lower levels of reduced GSH, and depletion of GSH by diethyl maleate or inhibition of GSH reductase by carmustine (BCNU) resulted in more pronounced cell death compared to aortic SMCs, while addition of antioxidants improved the viability of esSMCs. We present the first proteomic analysis of esSMCs demonstrating that stem cell-derived SMCs are more sensitive to oxidative stress due to increased generation of mitochondrial-derived ROS and require additional antioxidant protection for survival.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-984
    Nombre del producto:
    Anti-Mn-SOD Antibody
  • Alpha-fetoprotein is dynamically expressed in rat pancreas during development. 17880577

    To identify proteins involved in pancreatic development, we used a differential proteomics approach by comparing pancreatic extracts from four biologically significant stages of development: embryonic day (E) 15.5, E18.5, postnatal (P) days 0 and adult. By two-dimensional gel electrophoresis (2D-E) and MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) following database searching and protein annotation, 15 proteins were identified as being differently expressed in the pancreas between the four phases. The expression pattern and the localization of alpha-fetoprotein (AFP), one of significant changed proteins observed, were further determined. Four isoforms of AFP (72 kDa, 60 kDa, 48 kDa and 37 kDa) were found by Western blotting in the pancreas tested, most of them showed a stronger signal in E18.5 followed by a steady decrease and only a 60-kDa isoform was detected in the adult pancreas. Immunolocalization for AFP revealed that a positive reactivity was detectable at E15.5 pancreas, became stronger in the cytoplasm of mesenchyme cells at E18.5, and declined after birth to a nearly undetectable level in adults. The dynamic expression of AFP in rat pancreas from different stages indicates that AFP might be involved in some aspects of pancreatic development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL202
    Nombre del producto:
    Anti-Vimentin Antibody, clone VIM 3B4
  • L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. 21737418

    Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between L-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1-8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198-209, 219-229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220-229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also μ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB318
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • Development and validation of an HPLC method for the determination of penicillin antibiotics residues in bovine muscle according to the European Union Decision 2002/657/E ... 17960837

    A high-performance liquid chromatographic method was developed for the determination of five penicillins: penicillin G (PENG), penicillin V (PENV), oxacillin (OX), cloxacillin (CLO), and dicloxacillin (DICLO), in bovine muscle. Samples were macerated with a mixture of H(2)O/CH(3)CN (1:1) and purified using RP-8 Adsorbex SPE cartridges after centrifugation, with mean recovery from spiked samples higher than 89%. The separation of the examined penicillins was achieved on an analytical column, an Inertsil C8 5 microm, 250x4 mm(2), at ambient temperature. The mobile phase consisted of 0.1% TFA/ACN 50:50 v/v delivered isocratically at a flow rate of 1.1 mL/min. Analytes were monitored at 240 nm. The procedure was validated according to the European Union Decision 2002/657/EC by means of selectivity, stability, decision limit, detection capability, accuracy, and precision. Method's LOQ values achieved were 54 microg/kg for PENG and DICLO, 46 microg/kg for PENV, 16 microg/kg for OX, and 43 microg/kg for DICLO. The detection capabilities (CC(beta)) were 73.6 microg/kg for PENG, 29.1 microg/kg for PENV, 350.6 microg/kg for OX, 379.9 microg/kg for CLO, and 355.8 microg/kg for DICLO. The method was applied to various samples from the local market. Two penicillins were identified by photodiode array (PDA) detection and quantified.
    Tipo de documento:
    Referencia
    Referencia del producto:
    3195