Millipore Sigma Vibrant Logo
 

+reprogramming


404 Results Advanced Search  
Showing
Products (0)
Documents (389)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (377)
  • (7)
  • (2)
  • (2)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. 21050490

    The molecular mechanisms of genome reprogramming during transcriptional responses to stress are associated with specific chromatin modifications. Available data, however, describe histone modifications only at individual plant genes induced by stress. We have no knowledge of chromatin modifications taking place at genes whose transcription has been down-regulated or on the genome-wide chromatin modification patterns that occur during the plant's response to dehydration stress.Using chromatin immunoprecipitation and deep sequencing (ChIP-Seq) we established the whole-genome distribution patterns of histone H3 lysine 4 mono-, di-, and tri-methylation (H3K4me1, H3K4me2, and H3K4me3, respectively) in Arabidopsis thaliana during watered and dehydration stress conditions. In contrast to the relatively even distribution of H3 throughout the genome, the H3K4me1, H3K4me2, and H3K4me3 marks are predominantly located on genes. About 90% of annotated genes carry one or more of the H3K4 methylation marks. The H3K4me1 and H3K4me2 marks are more widely distributed (80% and 84%, respectively) than the H3K4me3 marks (62%), but the H3K4me2 and H3K4me1 levels changed only modestly during dehydration stress. By contrast, the H3K4me3 abundance changed robustly when transcripts levels from responding genes increased or decreased. In contrast to the prominent H3K4me3 peaks present at the 5'-ends of most transcribed genes, genes inducible by dehydration and ABA displayed atypically broader H3K4me3 distribution profiles that were present before and after the stress.A higher number (90%) of annotated Arabidopsis genes carry one or more types of H3K4me marks than previously reported. During the response to dehydration stress the changes in H3K4me1, H3K4me2, and H3K4me3 patterns show different dynamics and specific patterns at up-regulated, down-regulated, and unaffected genes. The different behavior of each methylation mark during the response process illustrates that they have distinct roles in the transcriptional response of implicated genes. The broad H3K4me3 distribution profiles on nucleosomes of stress-induced genes uncovered a specific chromatin pattern associated with many of the genes involved in the dehydration stress response.
    Document Type:
    Reference
    Product Catalog Number:
    07-212
    Product Catalog Name:
    Anti-dimethyl-Histone H3 (Lys9) Antibody
  • Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. 25664849

    Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2-driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. 19074500

    The production of cloned animals by the transfer of a differentiated somatic cell into an enucleated oocyte circumvents fertilization. During fertilization, the sperm delivers a sperm-specific phospholipase C (PLCZ) that is responsible for triggering Ca(2)(+) oscillations and oocyte activation. During bovine somatic cell nuclear transfer (SCNT), oocyte activation is artificially achieved by combined chemical treatments that induce a monotonic rise in intracellular Ca(2)(+) and inhibit either phosphorylation or protein synthesis. In this study, we tested the hypothesis that activation of bovine nuclear transfer embryos by PLCZ improves nuclear reprogramming. Injection of PLCZ cRNA into bovine SCNT units induced Ca(2)(+) oscillations similar to those observed after fertilization and supported high rates of blastocyst development similar to that seen in embryos produced by IVF. Furthermore, gene expression analysis at the eight-cell and blastocyst stages revealed a similar expression pattern for a number of genes in both groups of embryos. Lastly, levels of trimethylated lysine 27 at histone H3 in blastocysts were higher in bovine nuclear transfer embryos activated using cycloheximide and 6-dimethylaminopurine (DMAP) than in those activated using PLCZ or derived from IVF. These results demonstrate that exogenous PLCZ can be used to activate bovine SCNT-derived embryos and support the hypothesis that a fertilization-like activation response can enhance some aspects of nuclear reprogramming.
    Document Type:
    Reference
    Product Catalog Number:
    07-327
    Product Catalog Name:
    Anti-acetyl-Histone H4 (Lys5) Antibody
  • Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. 20164838

    Patients with dyskeratosis congenita (DC), a disorder of telomere maintenance, suffer degeneration of multiple tissues. Patient-specific induced pluripotent stem (iPS) cells represent invaluable in vitro models for human degenerative disorders like DC. A cardinal feature of iPS cells is acquisition of indefinite self-renewal capacity, which is accompanied by induction of the telomerase reverse transcriptase gene (TERT). We investigated whether defects in telomerase function would limit derivation and maintenance of iPS cells from patients with DC. Here we show that reprogrammed DC cells overcome a critical limitation in telomerase RNA component (TERC) levels to restore telomere maintenance and self-renewal. We discovered that TERC upregulation is a feature of the pluripotent state, that several telomerase components are targeted by pluripotency-associated transcription factors, and that in autosomal dominant DC, transcriptional silencing accompanies a 3' deletion at the TERC locus. Our results demonstrate that reprogramming restores telomere elongation in DC cells despite genetic lesions affecting telomerase, and show that strategies to increase TERC expression may be therapeutically beneficial in DC patients.
    Document Type:
    Reference
    Product Catalog Number:
    07-449
    Product Catalog Name:
    Anti-trimethyl-Histone H3 (Lys27) Antibody
  • Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. 22399769

    Transplantation of neural stem cells (NSCs) offers a novel therapeutic strategy for stroke; however, massive grafted cell death following transplantation, possibly due to a hostile host brain environment, lessens the effectiveness of this approach. Here, we have investigated whether reprogramming NSCs with minocycline, a broadly used antibiotic also known to possess cytoprotective properties, enhances survival of grafted cells and promotes neuroprotection in ischemic stroke. NSCs harvested from the subventricular zone of fetal rats were preconditioned with minocycline in vitro and transplanted into rat brains 6 h after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from days 0-28 after stroke. For in vitro experiments, NSCs were subjected to oxygen-glucose deprivation and reoxygenation. Cell viability and antioxidant gene expression were analyzed. Minocycline preconditioning protected the grafted NSCs from ischemic reperfusion injury via upregulation of Nrf2 and Nrf2-regulated antioxidant genes. Additionally, preconditioning with minocycline induced the NSCs to release paracrine factors, including brain-derived neurotrophic factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor. Moreover, transplantation of the minocycline-preconditioned NSCs significantly attenuated infarct size and improved neurological performance, compared with non-preconditioned NSCs. Minocycline-induced neuroprotection was abolished by transfecting the NSCs with Nrf2-small interfering RNA before transplantation. Thus, preconditioning with minocycline, which reprograms NSCs to tolerate oxidative stress after ischemic reperfusion injury and express higher levels of paracrine factors through Nrf2 up-regulation, is a simple and safe approach to enhance the effectiveness of transplantation therapy in ischemic stroke.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • An efficient immunodetection method for histone modifications in plants. 24341414

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells.Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana.There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. 21278734

    Here we show that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner. With as little as 4 days of transgenic expression of these factors, mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to spontaneously contracting patches of differentiated cardiomyocytes over a period of 11-12 days. Several lines of evidence suggest that a pluripotent intermediate is not involved. Our method represents a unique strategy that allows a transient, plastic developmental state established early in reprogramming to effectively function as a cellular transdifferentiation platform, the use of which could extend beyond cardiogenesis. Our study has potentially wide-ranging implications for induced pluripotent stem cell (iPSC)-factor-based reprogramming and broadens the existing paradigm.
    Document Type:
    Reference
    Product Catalog Number:
    17-622
    Product Catalog Name:
    ChIPAb+ Trimethyl-Histone H3 (Lys27) - ChIP Validated Antibody and Primer Set
  • Nuclear reprogramming of somatic cells by embryonic stem cells is affected by cell cycle stage. 17009894

    Hybrid embryonic stem (ES)-like clones were generated by fusion of murine ES cells with somatic cells that carried a neo resistance gene under the transcriptional control of the Oct-4 promoter. The Oct-4 promoter was reactivated in hybrid ES cells formed by fusion with fetal fibroblasts, and all hybrid colonies were of ES rather than fibroblast phenotype, suggesting efficient reprogramming of fibroblast chromosomes. Like normal diploid murine ES cells, hybrid lines expressed alkaline phosphatase activity and formed differentiated cells derived from the three embryonic germ layers both in vitro and in vivo. Treatments thought to affect nuclear transfer efficiency (ES cell confluence and serum starvation of primary embryonic fibroblasts) were investigated to determine whether they had an effect on reprogramming in cell hybrids. Serum starvation of primary embryonic fibroblasts increased hybrid colony number 50-fold. ES cells were most effective at reprogramming when they contained a high proportion of cells in the S and G2/M phases of the cell cycle. These data suggest that nuclear reprogramming requires an initial round of somatic DNA replication of quiescent chromatin in the presence of ES-derived factors produced during S and G2/M phases.
    Document Type:
    Reference
    Product Catalog Number:
    AB3843
    Product Catalog Name:
    Anti-Ezrin/Radixin/Moesin Antibody
  • SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. 25001863

    Mechanism-based sepsis treatments are unavailable, and their incidence is rising worldwide. Deaths occur during the early acute phase of hyperinflammation or subsequent postacute hypoinflammatory phase with sustained organ failure. The acute sepsis phase shifts rapidly, and multiple attempts to treat early excessive inflammation have uniformly failed. We reported in a sepsis cell model and human sepsis blood leukocytes that nuclear NAD+ sensor SIRT1 deacetylase remodels chromatin at specific gene sets to switch the acute-phase proinflammatory response to hypoinflammatory. Importantly, SIRT1 chromatin reprogramming is reversible, suggesting that inhibition of SIRT1 might reverse postacute-phase hypoinflammation. We tested this concept in septic mice, using the highly specific SIRT1 inhibitor EX-527, a small molecule that closes the NAD+ binding site of SIRT1. Strikingly, when administered 24 h after sepsis, all treated animals survived, whereas only 40% of untreated mice survived. EX-527 treatment reversed the inability of leukocytes to adhere at the small intestine MVI, reversed in vivo endotoxin tolerance, increased leukocyte accumulation in peritoneum, and improved peritoneal bacterial clearance. Mechanistically, the SIRT1 inhibitor restored repressed endothelial E-selectin and ICAM-1 expression and PSGL-1 expression on the neutrophils. Systemic benefits of EX-527 treatment included stabilized blood pressure, improved microvascular blood flow, and a shift toward proimmune macrophages in spleen and bone marrow. Our findings reveal that modifying the SIRT1 NAD+ axis may provide a novel way to treat sepsis in its hypoinflammatory phase.
    Document Type:
    Reference
    Product Catalog Number:
    07-131
    Product Catalog Name:
    Anti-Sirt1(Sir2) Antibody