Millipore Sigma Vibrant Logo
 

05-775


4 Results Advanced Search  
Showing
Products (0)
Documents (4)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (3)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. 18641685

    Activating mutations in genes of the Ras-mitogen-activated protein kinase (MAPK) pathway occur in approximately 30% of all human cancers; however, mutation of Ras alone is rarely sufficient to induce tumour development. Scribble is a polarity regulator recently isolated from a Drosophila screen for events that cooperate with Ras mutation to promote tumour progression and cell invasion. In mammals, Scribble regulates directed cell migration and wound healing in vivo; however, no role has been identified for mammalian Scribble in oncogenic transformation. Here we show that in human epithelial cells expressing oncogenic Ras or Raf, loss of Scribble promotes invasion of cells through extracellular matrix in an organotypic culture system. Further, we show that the mechanism by which this occurs is in the regulation of MAPK signalling by Scribble. The suppression of MAPK signalling is a highly conserved function of Scribble as it also prevents Raf-mediated defects in Drosophila wing development. Our data identify Scribble as an important mediator of MAPK signalling and provide a molecular basis for the observation that Scribble expression is decreased in many invasive human cancers.
    Document Type:
    Reference
    Product Catalog Number:
    05-775
  • Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. 21368274

    We have shown previously that mutations in the apico-basal cell polarity regulators cooperate with oncogenic Ras (Ras(ACT)) to promote tumorigenesis in Drosophila melanogaster and mammalian cells. To identify novel genes that cooperate with Ras(ACT) in tumorigenesis, we carried out a genome-wide screen for genes that when overexpressed throughout the developing Drosophila eye enhance Ras(ACT)-driven hyperplasia. Ras(ACT)-cooperating genes identified were Rac1 Rho1, RhoGEF2, pbl, rib, and east, which encode cell morphology regulators. In a clonal setting, which reveals genes conferring a competitive advantage over wild-type cells, only Rac1, an activated allele of Rho1 (Rho1(ACT)), RhoGEF2, and pbl cooperated with Ras(ACT), resulting in reduced differentiation and large invasive tumors. Expression of RhoGEF2 or Rac1 with Ras(ACT) upregulated Jun kinase (JNK) activity, and JNK upregulation was essential for cooperation. However, in the whole-tissue system, upregulation of JNK alone was not sufficient for cooperation with Ras(ACT), while in the clonal setting, JNK upregulation was sufficient for Ras(ACT)-mediated tumorigenesis. JNK upregulation was also sufficient to confer invasive growth of Ras(V12)-expressing mammalian MCF10A breast epithelial cells. Consistent with this, HER2(+) human breast cancers (where human epidermal growth factor 2 is overexpressed and Ras signaling upregulated) show a significant correlation with a signature representing JNK pathway activation. Moreover, our genetic analysis in Drosophila revealed that Rho1 and Rac are important for the cooperation of RhoGEF2 or Pbl overexpression and of mutants in polarity regulators, Dlg and aPKC, with Ras(ACT) in the whole-tissue context. Collectively our analysis reveals the importance of the RhoGEF/Rho-family/JNK pathway in cooperative tumorigenesis with Ras(ACT).
    Document Type:
    Reference
    Product Catalog Number:
    05-775
  • Mammalian Ras interacts directly with the serine/threonine kinase Raf. 8334704

    We have identified proteins that interact with H-Ras using a two hybrid system screen of a mouse cDNA library. Approximately 50% of the clones identified encoded portions of the c-Raf and A-Raf serine/threonine kinases. Overlaps among these clones define a conserved 81 residue region of the N-terminus of Raf as the Ras interaction region. We show that Raf interacts with wild-type and activated Ras, but not with an effector domain mutant of Ras or with a dominant-interfering Ras mutant. Using purified bacterially expressed fusion proteins, we show, furthermore, that Ras and the N-terminal region of Raf associate directly in vitro and that this interaction is dependent on GTP bound to Ras.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »