Millipore Sigma Vibrant Logo
 

c3


458 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (304)
  • (81)
  • (1)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. 1910014

    Clostridium botulinum type C and D strains produce exoenzyme C3, which ADP-ribosylates the Rho protein, a 21-kDa regulatory GTP-binding protein. In a previous work, we demonstrated that the C3 gene is encoded by bacteriophages C and D of C. botulinum by using DNA-DNA hybridizations with oligonucleotides deduced from the C3 protein N-terminal sequence. The C3 coding gene was cloned and sequenced, but its upstream DNA region could not be studied because of its instability in Escherichia coli. In this work, the upstream DNA region of the C3 gene was directly amplified by the polymerase chain reaction and sequenced. The C3 gene encodes a polypeptide of 251 amino acids (27,823 Da) consisting of a 40-amino-acid signal peptide and a mature protein of 211 amino acids (23,546 Da). The C3 mature protein was expressed in E. coli under the control of the trc promoter. The recombinant polypeptide obtained was recognized by C3 antibodies and ADP-ribosylated the Rho protein. The C3 gene nucleotide sequence is identical on C and D phage DNAs. At the amino acid sequence level, no similarity was found among C3, other ADP-ribosylating toxins, or tetanus or botulinal A, C1, and D neurotoxins.
    Document Type:
    Reference
    Product Catalog Number:
    14-118
  • Efferent projections of C3 adrenergic neurons in the rat central nervous system. 22237784

    C3 neurons constitute one of three known adrenergic nuclei in the rat central nervous system (CNS). While the adrenergic C1 cell group has been extensively characterized both physiologically and anatomically, the C3 nucleus has remained relatively obscure. This study employed a lentiviral tracing technique that expresses green fluorescent protein behind a promoter selective to noradrenergic and adrenergic neurons. Microinjection of this virus into the C3 nucleus enabled the selective tracing of C3 efferents throughout the rat CNS, thus revealing the anatomical framework of C3 projections. C3 terminal fields were observed in over 40 different CNS nuclei, spanning all levels of the spinal cord, as well as various medullary, mesencephalic, hypothalamic, thalamic, and telencephalic nuclei. The highest densities of C3 axon varicosities were observed in Lamina X and the intermediolateral cell column of the thoracic spinal cord, as well as the dorsomedial medulla (both commissural and medial nuclei of the solitary tract, area postrema, and the dorsal motor nucleus of the vagus), ventrolateral periaqueductal gray, dorsal parabrachial nucleus, periventricular and rhomboid nuclei of the thalamus, and paraventricular and periventricular nuclei of the hypothalamus. In addition, moderate and sparse projections were observed in many catecholaminergic and serotonergic nuclei, as well as the area anterior and ventral to the third ventricle, Lamina X of the cervical, lumbar, and sacral spinal cord, and various hypothalamic and telencephalic nuclei. The anatomical map of C3 projections detailed in this survey hopes to lay the first steps toward developing a functional framework for this nucleus.
    Document Type:
    Reference
    Product Catalog Number:
    AB152
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody