Skip to Content
Merck

P6354

1,2-Dioleoyl-sn-glycero-3-phosphocholine

lyophilized powder

Synonym(s):

PC, 1,2-Di(cis-9-octadecenoyl)-sn-glycero-3-phosphocholine, 3-sn-Phosphatidylcholine, 1,2-dioleoyl, L-α-Phosphatidylcholine, dioleoyl, L-β,γ-Dioleoyl-α-lecithin, DOPC

Sign In to View Organizational & Contract Pricing.

Select a Size



About This Item

Empirical Formula (Hill Notation):
C44H84NO8P
CAS Number:
Molecular Weight:
786.11
UNSPSC Code:
51191904
NACRES:
NA.25
PubChem Substance ID:
EC Number:
224-193-8
Beilstein/REAXYS Number:
3898070
MDL number:

Product Name

1,2-Dioleoyl-sn-glycero-3-phosphocholine, lyophilized powder

InChI key

SNKAWJBJQDLSFF-NVKMUCNASA-N

InChI

1S/C44H84NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h20-23,42H,6-19,24-41H2,1-5H3/b22-20-,23-21-/t42-/m1/s1

SMILES string

[O-]P(OCC[N+](C)(C)C)(OC[C@]([H])(OC(CCCCCCC/C=C\CCCCCCCC)=O)COC(CCCCCCC/C=C\CCCCCCCC)=O)=O

biological source

synthetic (organic)

assay

≥99% (TLC)

form

lyophilized powder

functional group

phospholipid

lipid type

phosphoglycerides

shipped in

ambient

storage temp.

−20°C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

1,2-Dioleoyl-sn-glycero-3-phosphocholine has been used for the reconstitution of proteoliposome (PL). It has also been used in the preparation of lipid vesicles.

Packaging

Packaged under Argon

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Micro-macro link in rheology of erythrocyte and vesicle suspensions
Vitkova V, et al.
Biophysical Journal, 95(6), L33-L35 (2008)
Arnau Biosca et al.
Pharmaceutics, 11(7) (2019-07-19)
Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment
Remo Friedrich et al.
Lab on a chip, 17(5), 830-841 (2017-01-28)
We present a nanofluidic device for fluorescence-based detection and characterization of small lipid vesicles on a single particle basis. The device works like a nano flow cytometer where individual vesicles are visualized by fluorescence microscopy while passing through parallel nanochannels
Naoya Matsuo et al.
Journal of lipid research, 60(7), 1199-1211 (2019-05-16)
In mammals, lipids are selectively transported to specific sites using multiple classes of lipoproteins. However, in Drosophila, a single class of lipoproteins, lipophorin, carries more than 95% of the lipids in the hemolymph. Although a unique ability of the insect
Camila Fabiano de Freitas et al.
Colloids and surfaces. B, Biointerfaces, 181, 837-844 (2019-06-30)
Liposomes are membrane models and excellent Drug Delivery Systems. However, their preparation is expensive, labor intensive, time consuming, and sometimes toxic. Recently, we published an innovative methodology for the production of homogeneous Small Unilamellar Vesicles (SUV) through a simple, fast

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service