Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
PubChem Substance ID:
eCl@ss:
38150101
UNSPSC Code:
12141711
NACRES:
NA.23
EC Number:
231-159-6
MDL number:
InChI key
RYGMFSIKBFXOCR-UHFFFAOYSA-N
InChI
1S/Cu
SMILES string
[Cu]
assay
99.99% trace metals basis
form
powder
resistivity
1.673 μΩ-cm, 20°C
bp
2567 °C (lit.)
mp
1083.4 °C (lit.)
density
8.94 g/mL at 25 °C (lit.)
Quality Level
General description
Copper powder, 99.999% trace metals basis, is a fine powder that is typically red-brown in color. It is often produced through the reduction of copper oxide or other copper compounds using hydrogen or other reducing agents. Our powder is highly pure, with less than 15 ppm impurities such as lead, arsenic, and bismuth, making it suitable for a wide range of industrial and commercial applications. Copper is valued for its excellent electrical and thermal conductivity, high ductility, and resistance to corrosion.
Application
High-purity copper powder is used in a variety of applications, such as in the production of electrical components and conductive coatings and as a catalyst in chemical reactions. Additionally, copper powder can be used in the production of various alloys and as a raw material for powder metallurgy.
Features and Benefits
Our 99.999% pure copper powder is useful in the electronics and chemical industries where purity matters most.
✔ Consistent quality
✔ Ultra high purity
✔ Available to scale up: bulk and pilot scale
✔ Consistent quality
✔ Ultra high purity
✔ Available to scale up: bulk and pilot scale
ppe
Eyeshields, Gloves, type P3 (EN 143) respirator cartridges
signalword
Warning
hcodes
pcodes
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class
11 - Combustible Solids
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Stephen G Kaler et al.
The New England journal of medicine, 358(6), 605-614 (2008-02-08)
Menkes disease is a fatal neurodegenerative disorder of infancy caused by diverse mutations in a copper-transport gene, ATP7A. Early treatment with copper injections may prevent death and illness, but presymptomatic detection is hindered by the inadequate sensitivity and specificity of
Daniel L Priebbenow et al.
Organic letters, 15(24), 6155-6157 (2013-11-28)
A method has been developed for the preparation of N-alkynylated sulfoximines involving the copper-catalyzed decarboxylative coupling of sulfoximines with aryl propiolic acids. A range of substituents on both the sulfoximidoyl moiety and the aryl group of the propiolic acid were
Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by
Yan Meng et al.
Biochimica et biophysica acta, 1690(3), 208-219 (2004-10-30)
Hepatic abnormalities in Long-Evans Cinnamon (LEC) rats, an animal model of Wilson disease (WD), were restored by the expression of the human ATP7B cDNA under the control of CAG promoter. Expression of ATP7B transcript and protein in the liver of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service