Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C52H45NO4P2PdS
CAS Number:
Molecular Weight:
948.35
MDL number:
UNSPSC Code:
12352101
NACRES:
NA.22
Product Name
XantPhos Pd G3 ChemBeads,
InChI key
OIQIZOZMASPGRN-UHFFFAOYSA-M
Quality Level
greener alternative product characteristics
Waste Prevention
Catalysis
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
greener alternative category
product line
ChemBeads
form
solid
reaction suitability
reagent type: catalyst
reaction type: Cross Couplings
General description
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Greener Chemistry. ChemBeads are advanced solid-coated beads for high-throughput experimentation in various chemical applications. They enable precise dispensing of solid reagents, allowing researchers to conduct reactions with minimal material use, thus supporting waste prevention and catalysis principles while ensuring accuracy and reproducibility. This technology enhances efficiency and streamlines experimental processes in chemistry. Click here for more information.
XantPhos Pd G3 is a third generation (G3) Buchwald precatalyst. It is air, moisture and thermally-stable and is highly soluble in a wide range of common organic solvents. It has long life in solutions. XantPhos Pd G3 is an excellent reagent for palladium catalyzed cross-coupling reactions. Some of its unique features include lower catalyst loadings, shorter reaction time, efficient formation of the active catalytic species and accurate control of ligand: palladium ratio.
Application
XantPhos Pd G3 may be used in the following processes:
Negishi cross-coupling reaction during the synthesis of palmerolides.
Aminocarbonylation of heteroaryl bromides with carbon monoxide (CO) in the presence of triethylamine.
Coupling between polyglycosyl thiols and aglycon halides by C-S bond formation.
ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.
Learn more about ChemBeads products
Product is also available as neat precatalyst (763039)
Negishi cross-coupling reaction during the synthesis of palmerolides.
Aminocarbonylation of heteroaryl bromides with carbon monoxide (CO) in the presence of triethylamine.
Coupling between polyglycosyl thiols and aglycon halides by C-S bond formation.
ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.
Learn more about ChemBeads products
Product is also available as neat precatalyst (763039)
Other Notes
High-Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads
Versatile Methods to Dispense Sub-Milligram Quantities of Solids using Chemical Coated Beads for High-Throughput Experimentation
ChemBead Enabled High-Throughput Cross-Electrophile Coupling Reveals a New Complementary Ligand
Versatile Methods to Dispense Sub-Milligram Quantities of Solids using Chemical Coated Beads for High-Throughput Experimentation
ChemBead Enabled High-Throughput Cross-Electrophile Coupling Reveals a New Complementary Ligand
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
High-Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads
Tu, Noah P., et al.
Angewandte Chemie (International Edition in English), 58, 7987-7991 (2019)
Versatile Methods to Dispense Submilligram Quantities of Solids Using Chemical-Coated Beads for High-Throughput Experimentation
Martin, et al
Organic Process Research & Development, 23, 1900?1907-1900?1907 (2019)
Ana L Aguirre et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 27(51), 12981-12986 (2021-07-08)
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service