Skip to Content
Merck

SML0177

AUDA

≥98% (HPLC)

Synonym(s):

12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C23H40N2O3
CAS Number:
Molecular Weight:
392.58
NACRES:
NA.77
PubChem Substance ID:
UNSPSC Code:
12352200
MDL number:
Assay:
≥98% (HPLC)
Form:
powder
Quality level:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI

1S/C23H40N2O3/c26-21(27)10-8-6-4-2-1-3-5-7-9-11-24-22(28)25-23-15-18-12-19(16-23)14-20(13-18)17-23/h18-20H,1-17H2,(H,26,27)(H2,24,25,28)/t18-,19+,20-,23-

SMILES string

OC(=O)CCCCCCCCCCCNC(=O)NC12C[C@@H]3C[C@@H](C[C@@H](C3)C1)C2

InChI key

XLGSEOAVLVTJDH-UKBVAGSOSA-N

assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: ≥10 mg/mL at warmed to 60 °C

storage temp.

−20°C

Quality Level

Application

AUDA has been used in the inhibition of epoxide hydrolase in human macrophages and in inhibition of tumor necrosis factor α (TNF-α)- induced phosphorylation in human aortic smooth muscle cells.
AUDA may be used in soluble epoxide hydrolase-mediated cell signaling studies.

Biochem/physiol Actions

AUDA is a potent inhibitor of soluble epoxide hydrolase
Inhibition of soluble epoxide hydrolase by AUDA inhibits the metabolism of epoxyeicosatrienoic acids (EETs) and protects end-organs against the damaging effects of salt-sensitive hypertension. AUDA also renders protection against myocardial ischemia-reperfusion injury and cerebral ischemia.

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

PD n-3 DPA Pathway Regulates Human Monocyte Differentiation and Macrophage Function
Pistorius K, et al.
Cell Chemical Biology, 25(6), 749-760 (2018)
Chun-Hu Wu et al.
Journal of neuroinflammation, 14(1), 230-230 (2017-11-28)
Inflammatory responses significantly contribute to neuronal damage and poor functional outcomes following intracerebral hemorrhage (ICH). Soluble epoxide hydrolase (sEH) is known to induce neuroinflammatory responses via degradation of anti-inflammatory epoxyeicosatrienoic acids (EET), and sEH is upregulated in response to brain
Jang Hoon Kim et al.
Biomolecules, 10(2) (2020-01-30)
: Three flavonoids derived from the leaves of Capsicum chinense Jacq. were identified as chrysoeriol (1), luteolin-7-O-glucopyranoside (2), and isorhamnetin-7-O-glucopyranoside (3). They had IC50 values of 11.6±2.9, 14.4±1.5, and 42.7±3.5 µg/mL against soluble epoxide hydrolase (sEH), respectively. The three inhibitors
In Sook Cho et al.
Molecules (Basel, Switzerland), 25(18) (2020-09-26)
Flavonoids and triterpenoids were revealed to be the potential inhibitors on soluble epoxide hydrolase (sEH). The aim of this study is to reveal sEH inhibitors from Fuji apples. A flavonoid and three triterpenoids derived from the fruit of Malus domestica
Jung Pyo Lee et al.
PloS one, 7(5), e37075-e37075 (2012-05-17)
Soluble epoxide hydrolase (sEH) in endothelial cells determines the plasma concentrations of epoxyeicosatrienoic acids (EETs), which may act as vasoactive agents to control vascular tone. We hypothesized that the regulation of sEH activity may have a therapeutic value in preventing

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service