Skip to Content
Merck

326755

Copper(II) acetate

greener alternative

98%

Synonym(s):

Cupric acetate

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
Cu(CO2CH3)2
CAS Number:
Molecular Weight:
181.63
UNSPSC Code:
12352302
NACRES:
NA.22
PubChem Substance ID:
EC Number:
205-553-3
Beilstein/REAXYS Number:
3595638
MDL number:
Assay:
98%
Form:
powder or crystals
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

OPQARKPSCNTWTJ-UHFFFAOYSA-L

InChI

1S/2C2H4O2.Cu/c2*1-2(3)4;/h2*1H3,(H,3,4);/q;;+2/p-2

SMILES string

CC(=O)O[Cu]OC(C)=O

vapor density

6.9 (vs air)

assay

98%

form

powder or crystals

Quality Level

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

greener alternative category

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Copper(II) acetate also known as cupric acetate, can be used as a catalyst in various processes in the field of greener chemistry. It is particularly useful in cross-coupling reactions, where it can promote the formation of carbon-carbon or carbon-heteroatom bonds, without the need for hazardous reagents or solvents

Application

Catalyst for greener amine synthesis by reductive amination with hydrogen gas.

Copper-catalyzed reductive amination of aromatic and aliphatic ketones with anilines using environmental-friendly molecular hydrogen

Copper(II) acetate is used as a catalyst:
  • In the N-arylation of α-amino esters with p-tolylboronic acid to synthesize biaryls via cross-coupling reactions
  • In the the synthesis of substituted isoxazole derivatives

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

Storage Class

8B - Non-combustible corrosive hazardous materials

wgk

WGK 3

flash_point_f

does not flash

flash_point_c

does not flash

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

N-Arylation of ?-aminoesters with p-tolylboronic acid promoted by copper (II) acetate
PYS Lam, et al.
Tetrahedron Letters, 44, 1691-1694 (2003)
An efficient synthesis of novel isoxazole bearing pyrazole derivatives via [3+ 2] heteroannulation using cupric acetate
B Audichya, et al.
Journal of Heterocyclic Chemistry, 59, 341-350 (2022)
Anitha M Thomas et al.
Journal of controlled release : official journal of the Controlled Release Society, 150(2), 212-219 (2010-11-26)
5-Fluorouracil (5-FU) is a small, very membrane permeable drug that is poorly retained within the aqueous compartment of liposomal nanoparticles (LNP). To address this problem a novel method relying on formation of a ternary complex comprising copper, low molecular weight
Heather A Michaels et al.
Chemistry, an Asian journal, 6(10), 2825-2834 (2011-09-29)
Polytriazole ligands such as the widely used tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA), are shown to assist copper(II) acetate-mediated azide-alkyne cycloaddition (AAC) reactions that involve nonchelating azides. Tris(2-{4-[(dimethylamino)methyl]-1H-1,2,3-traizol-1-yl}ethyl)amine (DTEA) outperforms TBTA in a number of reactions. The satisfactory solubility of DTEA in a wide
Cinthia da S Lisboa et al.
The Journal of organic chemistry, 76(13), 5264-5273 (2011-05-25)
The oxidative addition of anilines (2) with 1,4-naphthoquinone (3) to give N-aryl-2-amino-1,4-naphthoquinones (1) was found to be catalyzed by copper(II) acetate. In the absence of the catalyst, the reactions are slower and give lower yields with the formation of many

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service