Skip to Content
Merck

02558

Rhodamine B solution

0.2% in isopropanol, for TLC derivatization

Sign In to View Organizational & Contract Pricing.

Select a Size



About This Item

Empirical Formula (Hill Notation):
C28H31ClN2O3
CAS Number:
Molecular Weight:
479.01
UNSPSC Code:
41116105
NACRES:
NA.22
PubChem Substance ID:
EC Number:
200-661-7
Beilstein/REAXYS Number:
4119648
MDL number:

Product Name

Rhodamine B solution, 0.2% in isopropanol, for TLC derivatization

InChI key

PYWVYCXTNDRMGF-UHFFFAOYSA-N

InChI

1S/C28H30N2O3.ClH/c1-5-29(6-2)19-13-15-23-25(17-19)33-26-18-20(30(7-3)8-4)14-16-24(26)27(23)21-11-9-10-12-22(21)28(31)32;/h9-18H,5-8H2,1-4H3;1H

SMILES string

[Cl-].CCN(CC)c1ccc2c(OC3=CC(\C=CC3=C2c4ccccc4C(O)=O)=[N+](\CC)CC)c1

concentration

0.2% in isopropanol

technique(s)

thin layer chromatography (TLC): suitable

density

0.79 g/mL at 20 °C

Quality Level

Application

ready-to-use spray and dip reagent for chromatography

pictograms

FlameExclamation mark

signalword

Danger

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

target_organs

Central nervous system

Storage Class

3 - Flammable liquids

wgk

WGK 2

flash_point_f

53.6 °F - closed cup

flash_point_c

12 °C - closed cup

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Qi Wang et al.
Journal of hazardous materials, 246-247, 135-144 (2013-01-10)
Amorphous TiO(2) (Am-TiO(2)) was prepared at room temperature by hydrolysis of Ti(OBu)(4) in water without addition of strong acids or organic solvents. Results from XRD and TEM revealed that the as-prepared Am-TiO(2) was composed of amorphous structure. For the simultaneous
Shengnan Su et al.
Journal of hazardous materials, 244-245, 736-742 (2012-12-01)
The removal of Rhodamine B (RhB) by Co(x)Fe(3-x)O(4) magnetic nanoparticles activated Oxone has been performed in this study. A series of Co(x)Fe(3-x)O(4) nanoparticles was synthesized using a hydrothermal method. The synthetic Co(x)Fe(3-x)O(4) nanoparticles were characterized using X-ray diffraction (XRD) and
Daniel J Coles et al.
Chemical communications (Cambridge, England), 49(37), 3836-3838 (2013-02-19)
Hyperbranched polymers conjugated to a peptide-aptamer were prepared using a combination of RAFT polymerisation and click chemistry for targeting tumour cells in vivo. The polymers showed enhanced cell-uptake in vitro (compared to unconjugated polymer) while excellent specificity for solid tumours
Van Duong Ta et al.
Scientific reports, 3, 1362-1362 (2013-03-02)
Optical microcavities are important for both fundamental studies of light-matter interaction and applications such as microlasers, optical switches and filters etc... Tunable microresonators, in which resonant modes can be manipulated, are especially fascinating. Here we demonstrate a unique approach to
Linda Johansson et al.
Ultrasonics, 53(5), 1020-1032 (2013-03-19)
An acoustic trap with miniaturized integrated transducers (MITs) for applications in non-contact trapping of cells or particles in a microfluidic channel was characterized by measuring the temperature increase and trapping strength. The fluid temperature was measured by the fluorescent response

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service