Skip to Content
Merck

Synthetic protease-activated class B GPCRs.

Biochemical and biophysical research communications (2020-08-24)
Francis S Willard, Tamika D Meredith, Aaron D Showalter, Wenzhen Ma, Joseph D Ho, J Michael Sauder, Kyle W Sloop
ABSTRACT

G-protein coupled receptors (GPCRs) are the ligand detection machinery of a majority of extracellular signaling systems in metazoans. Novel chemical and biological tools to probe the structure-function relationships of GPCRs have impacted both basic and applied GPCR research. To better understand the structure-function of class B GPCRs, we generated receptor-ligand fusion chimeric proteins that can be activated by exogenous enzyme application. As a prototype, fusion proteins of the glucagon-like peptide-1 receptor (GLP-1R) with GLP-1(7-36) and exendin-4(1-39) peptides incorporating enterokinase-cleavable N-termini were generated. These receptors are predicted to generate fusion protein neo-epitopes upon proteolysis with enterokinase that are identical to the N-termini of GLP-1 agonists. This system was validated by measuring enterokinase-dependent GLP-1R mediated cAMP accumulation, and a structure-activity relationship for both linker length and peptide sequence was observed. Moreover, our results show this approach can be used in physiologically relevant cell systems, as GLP-1R-ligand chimeras were shown to induce glucose-dependent insulin secretion in insulinoma cells upon exposure to enterokinase. This approach suggests new strategies for understanding the structure-function of peptide-binding GPCRs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)