Skip to Content
Merck
  • p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy.

p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy.

Cancer discovery (2023-03-09)
Douglas V Faget, Xianmin Luo, Matthew J Inkman, Qihao Ren, Xinming Su, Kai Ding, Michael R Waters, Ganesh Kumar Raut, Gaurav Pandey, Paarth B Dodhiawala, Renata Ramalho-Oliveira, Jiayu Ye, Thomas Cole, Bhavna Murali, Alexander Zheleznyak, Monica Shokeen, Kurt R Weiss, Joseph B Monahan, Carl J DeSelm, Adrian V Lee, Steffi Oesterreich, Katherine N Weilbaecher, Jin Zhang, David G DeNardo, Sheila A Stewart
ABSTRACT

Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing. Thus, we combined p38i and an OX40 agonist that synergistically reduced metastatic growth and increased overall survival. Intriguingly, patients with a p38i metastatic stromal signature had better overall survival that was further improved by the presence of an increased mutational load, leading us to ask if our approach would be effective in antigenic breast cancer. The combination of p38i, anti-OX40, and cytotoxic T-cell engagement cured mice of metastatic disease and produced long-term immunologic memory. Our findings demonstrate that a detailed understanding of the stromal compartment can be used to design effective antimetastatic therapies. Immunotherapy is rarely effective in breast cancer. We dissected the metastatic tumor stroma, which revealed a novel therapeutic approach that targets the stromal p38MAPK pathway and creates an opportunity to unleash an immunologic response. Our work underscores the importance of understanding the tumor stromal compartment in therapeutic design. This article is highlighted in the In This Issue feature, p. 1275.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protease Inhibitor Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Anti-GAPDH antibody, Mouse monoclonal, clone GAPDH-71.1, purified from hybridoma cell culture
Sigma-Aldrich
Phenylmethylsulfonyl Fluoride, Phenylmethylsulfonyl Fluoride, CAS 329-98-6, is an irreversible inhibitor of serine proteases. It causes sulfonylation of the active-site serine residues.
Sigma-Aldrich
Phosphatase Inhibitor Cocktail Set I, Phosphatase Inhibitor Cocktail Set I contains three inhibitors that will inhibit alkaline phosphatases as well as serine/threonine protein phosphatases such as PP1 and PP2A.