Skip to Content
Merck
  • The short-chain fatty acid acetate coordinates with CD30 to modulate T-cell survival.

The short-chain fatty acid acetate coordinates with CD30 to modulate T-cell survival.

Molecular biology of the cell (2023-05-10)
Junfang Lyu, Ziyi Li, Jessica P Roberts, Yue A Qi, Jianhua Xiong
ABSTRACT

As an important substrate for cell metabolism, the short-chain fatty acid acetate emerges as a regulator of cell fate and function. However, its role in T-cell survival and its underlying mechanisms remain largely unknown. Here, we demonstrate that acetate modulates T-cell apoptosis via potentiation of α-tubulin acetylation. We further show that acetate treatment effectively increases the expression of the tumor necrosis factor receptor (TNFR) family member CD30 by enhancing its gene transcription. Moreover, CD30 physically associates with and stabilizes the deacetylase HDAC6, which deacetylates α-tubulin to decrease microtubule stability. Proteomic profiling of CD30 knockout (Cd30-/-) T-cells reveals elevated expression of anti-apoptotic BCL2 family proteins and thus promotes T-cell survival via a microtubule-Bcl-2 axis. Taken together, our results demonstrate that acetate is a regulator of T-cell survival by controlling levels of acetylated α-tubulin. This suggests that therapeutic manipulation of acetate metabolism may facilitate optimal T-cell responses in pathological conditions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Puromycin dihydrochloride from Streptomyces alboniger, powder, BioReagent, suitable for cell culture
Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2
Roche
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial