Skip to Content
Merck
  • Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene.

Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene.

The American journal of clinical nutrition (2015-11-06)
Doris Kuehnelt, Karin Engström, Helena Skröder, Sabine Kokarnig, Carina Schlebusch, Maria Kippler, Ayman Alhamdow, Barbro Nermell, Kevin Francesconi, Karin Broberg, Marie Vahter
ABSTRACT

Selenium is an essential element, but its metabolism in humans is not well characterized. A few small studies indicate that the trimethylselenonium ion (TMSe) is a common selenium metabolite in humans. This study aimed to elucidate the human metabolism of selenium to TMSe. Study individuals constituted subsamples of 2 cohorts: 1) pregnant women (n = 228) and their 5-y-old children (n = 205) in rural Bangladesh with poor selenium status [median urinary selenium (U-Se): 6.4 μg/L in mothers, 14 μg/L in children] and 2) women in the Argentinian Andes (n = 83) with adequate selenium status (median U-Se: 24 μg/L). Total U-Se and blood selenium were measured by inductively coupled plasma mass spectrometry (ICPMS), and urinary concentrations of TMSe were measured by high-performance liquid chromatography/vapor generation/ICPMS. A genomewide association study (GWAS) was performed for 1,629,299 (after filtration) single nucleotide polymorphisms (SNPs) in the Bangladeshi women (n = 72) by using Illumina Omni5M, and results were validated by using real-time polymerase chain reaction. TMSe "producers" were prevalent (approximately one-third) among the Bangladeshi women and their children, in whom TMSe constituted ∼10-70% of U-Se, whereas "nonproducers" had, on average, 0.59% TMSe. The TMSe-producing women had, on average, 2-μg U-Se/L higher concentrations than did the nonproducers. In contrast, only 3 of the 83 Andean women were TMSe producers (6-15% TMSe in the urine); the average percentage among the nonproducers was 0.35%. Comparison of the percentage of urinary TMSe in mothers and children indicated a strong genetic influence. The GWAS identified 3 SNPs in the indolethylamine N-methyltransferase gene (INMT) that were strongly associated with percentage of TMSe (P < 0.001, false-discovery rate corrected) in both cohorts. There are remarkable population and individual variations in the formation of TMSe, which could largely be explained by SNPs in INMT. The TMSe-producing women had higher U-Se concentrations than did nonproducers, but further elucidation of the metabolic pathways of selenium is essential for the understanding of its role in human health. The MINIMat trial was registered at isrctn.org as ISRCTN16581394.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Selenium, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis
Sigma-Aldrich
Selenium, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
Selenium, pellets, <5 mm particle size, ≥99.999% trace metals basis
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Selenium, powder, −100 mesh, 99.99% trace metals basis
Selenium, foil, 25x25mm, thickness 3mm, 99.95%
Sigma-Aldrich
Ammonium formate, reagent grade, 97%
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Supelco
Ammonium formate solution, 10 mM in H2O, suitable for HPLC
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Nitric acid, ACS reagent, 70%
Sigma-Aldrich
Nitric acid, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Nitric acid, puriss. p.a., ≥65% (T)
Sigma-Aldrich
Nitric acid, puriss. p.a., reag. ISO, reag. Ph. Eur., ≥65%