Millipore Sigma Vibrant Logo
 

arginine/1000


34 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Genomic insights of protein arginine methyltransferase Hmt1 binding reveals novel regulatory functions. 23268696

    Protein arginine methylation is a post-translational modification involved in important biological processes such as transcription and RNA processing. This modification is catalyzed by both type I and II protein arginine methyltransferases (PRMTs). One of the most conserved type I PRMTs is PRMT1, the homolog of which is Hmt1 in Saccharomyces cerevisiae. Hmt1 has been shown to play a role in various gene expression steps, such as promoting the dynamics of messenger ribonucleoprotein particle (mRNP) biogenesis, pre-mRNA splicing, and silencing of chromatin. To determine the full extent of Hmt1's involvement during gene expression, we carried out a genome-wide location analysis for Hmt1.A comprehensive genome-wide binding profile for Hmt1 was obtained by ChIP-chip using NimbleGen high-resolution tiling microarrays. Of the approximately 1000 Hmt1-binding sites found, the majority fall within or proximal to an ORF. Different occupancy patterns of Hmt1 across genes with different transcriptional rates were found. Interestingly, Hmt1 occupancy is found at a number of other genomic features such as tRNA and snoRNA genes, thereby implicating a regulatory role in the biogenesis of these non-coding RNAs. RNA hybridization analysis shows that Hmt1 loss-of-function mutants display higher steady-state tRNA abundance relative to the wild-type. Co-immunoprecipitation studies demonstrate that Hmt1 interacts with the TFIIIB component Bdp1, suggesting a mechanism for Hmt1 in modulating RNA Pol III transcription to regulate tRNA production.The genome-wide binding profile of Hmt1 reveals multiple potential new roles for Hmt1 in the control of eukaryotic gene expression, especially in the realm of non-coding RNAs. The data obtained here will provide an important blueprint for future mechanistic studies on the described occupancy relationship for genomic features bound by Hmt1.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • RNA editing of the Q/R site of GluA2 in different cultured cell lines that constitutively express different levels of RNA editing enzyme ADAR2. 22366356

    Adenosine deaminase acting on RNA 2 (ADAR2) catalyzes RNA editing at the glutamine/arginine (Q/R) site of GluA2, and an ADAR2 deficiency may play a role in the death of motor neurons in ALS patients. The expression level of ADAR2 mRNA is a determinant of the editing activity at the GluA2 Q/R site in human brain but not in cultured cells. Therefore, we investigated the extent of Q/R site-editing in the GluA2 mRNA and pre-mRNA as well as the ADAR2 mRNA and GluA2 mRNA and pre-mRNA levels in various cultured cell lines. The extent of the GluA2 mRNA editing was 100% except in SH-SY5Y cells, which have a much lower level of ADAR2 than the other cell lines examined. The ADAR2 activity at the GluA2 pre-mRNA Q/R site correlated with the ADAR2 mRNA level relative to the GluA2 pre-mRNA. SH-SY5Y cells expressed higher level of the GluA2 mRNA in the cytoplasm compared with other cell lines. These results suggest that the ADAR2 expression level reflects editing activity at the GluA2 Q/R site and that although the edited GluA2 pre-mRNA is readily spliced, the unedited GluA2 pre-mRNA is also spliced and transported to the cytoplasm when ADAR2 expression is low.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. 21853042

    Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs), the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Citrullination of RGG Motifs in FET Proteins by PAD4 Regulates Protein Aggregation and ALS Susceptibility. 29425503

    Recent proteome analyses have provided a comprehensive overview of various posttranslational modifications (PTMs); however, PTMs involving protein citrullination remain unclear. We performed a proteomic analysis of citrullinated proteins, and we identified more than 100 PAD4 (peptidyl arginine deiminase 4) substrates. Approximately one-fifth of the PAD4 substrates contained an RG/RGG motif, and PAD4 competitively inhibited the methylation of the RGG motif in FET proteins (FUS, EWS, and TAF15) and hnRNPA1, which are causative genes for ALS (amyotrophic lateral sclerosis). PAD4-mediated citrullination significantly inhibited the aggregation of FET proteins, a frequently observed feature in neurodegenerative diseases. FUS protein levels in arsenic-induced stress granules were significantly increased in Padi4-/- mouse embryonic fibroblasts (MEFs). Moreover, rs2240335 was associated with low expression of PADI4 in the brain and a high risk of ALS (p = 0.0381 and odds ratio of 1.072). Our findings suggest that PAD4-mediated RGG citrullination plays a key role in protein solubility and ALS pathogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Postnatal downregulation of inhibitory neuromuscular transmission to the longitudinal muscle of the guinea pig ileum. 19374637

    Neuromuscular transmission is crucial for normal gut motility but little is known about its postnatal maturation. This study investigated excitatory/inhibitory neuromuscular transmission in vitro using ileal nerve-muscle preparations made from neonatal (< or =48 h postnatal) and adult ( approximately 4 months postnatal) guinea pigs. In tissues from neonates and adults, nicotine (0.3-30 micromol L(-1)) contracted longitudinal muscle preparations in a tetrodotoxin (TTX) (0.3 micromol L(-1))-sensitive manner. The muscarinic receptor antagonist, scopolamine (1 micromol L(-1)), reduced substantially nicotine-induced contractions in neonatal tissues but not adult tissues. In the presence of N(omega)-nitro-l-arginine (NLA, 100 micromol L(-1)) to block nitric oxide (NO) mediated inhibitory neuromuscular transmission, scopolamine-resistant nicotine-induced contractions were revealed in neonatal tissues. NLA enhanced the nicotine-induced contractions in neonatal but not in adult tissues. Electrical field stimulation (20 V; 0.3 ms; 5-25 Hz, scopolamine 1 micromol L(-1) present) caused NLA and TTX-sensitive longitudinal muscle relaxations. Frequency-response curves in neonatal tissues were left-shifted compared with those obtained in adult tissues. Immunohistochemical studies revealed that NO synthase (NOS)-immunoreactivity (ir) was present in nerve fibres supplying the longitudinal muscle in neonatal and adult tissues. However, quantitative studies demonstrated that fluorescence intensity of NOS-ir nerve fibres was higher in neonatal than adult tissues. Nerve fibres containing substance P were abundant in longitudinal muscle in adult but not in neonatal tissues. Inhibitory neuromuscular transmission is relatively more effective in the neonatal guinea pig small intestine. Delayed maturation of excitatory motor pathways might contribute to paediatric motility disturbances.
    Document Type:
    Reference
    Product Catalog Number:
    AB1529
    Product Catalog Name:
    Anti-Nitric Oxide Synthase I Antibody
  • Relaxin ameliorates hypertension and increases nitric oxide metabolite excretion in angiotensin II but not N(ω)-nitro-L-arginine methyl ester hypertensive rats. 21670419

    Previous findings suggest a potential therapeutic action of relaxin, the putative vasodilatory signal of normal pregnancy, in some forms of cardiovascular disease. However, the mechanisms underlying the beneficial effects of relaxin have not been fully elucidated. The purpose of this study was to determine whether the vasodilatory effects of relaxin are dependent on activation of NO synthase. We examined the effect of relaxin in male Sprague-Dawley rats given angiotensin II (Ang II; 200 ng/kg per minute SC by minipump), the NO synthase inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME; 1.5 mg/100 g IV followed by 150 mg/L in drinking water), or vehicle for 3 weeks. After 7 days of Ang II or l-NAME, mean arterial pressure was elevated compared with baseline. Relaxin was administered (4 μg/h, SC by minipump) for the next 2 weeks of Ang II, l-NAME, or vehicle treatment. Two-week relaxin treatment alone slightly reduced mean arterial pressure in normotensive rats. Three weeks of either Ang II or l-NAME treatment alone produced hypertension, albuminuria, mild glomerular sclerosis, reduced nitric oxide metabolite excretion, and increased oxidative stress (excretion of hydrogen peroxide and thiobarbituric acid reactive substances and renal cortex nitrotyrosine abundance). Relaxin reduced mean arterial pressure, albumin excretion, and oxidative stress markers and preserved glomerular structure and nitric oxide metabolite excretion in Ang II-treated rats; however, relaxin did not attenuate these changes in the rats treated with l-NAME. None of the treatments affected protein abundance of neuronal or endothelial NO synthase in the kidney cortex. These data suggest that the vasodilatory effects of relaxin are dependent on a functional NO synthase system and increased NO bioavailability possibly because of a reduction in oxidative stress.
    Document Type:
    Reference
    Product Catalog Number:
    05-233
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody, clone 1A6
  • Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. 10973964

    In the renal collecting duct, vasopressin increases osmotic water permeability (P(f)) by triggering trafficking of aquaporin-2 vesicles to the apical plasma membrane. We investigated the role of vasopressin-induced intracellular Ca(2+) mobilization in this process. In isolated inner medullary collecting ducts (IMCDs), vasopressin (0.1 nm) and 8-(4-chlorophenylthio)-cAMP (0.1 mm) elicited marked increases in [Ca(2+)](i) (fluo-4). Vasopressin-induced Ca(2+) mobilization was completely blocked by preloading with the Ca(2+) chelator BAPTA. In parallel experiments, BAPTA completely blocked the vasopressin-induced increase in P(f) without affecting adenosine 3',5'-cyclic monophosphate (cAMP) production. Previously, we demonstrated the lack of activation of the phosphoinositide-signaling pathway by vasopressin in IMCD, suggesting an inositol 1,4,5-trisphosphate-independent mechanism of Ca(2+) release. Evidence for expression of the type 1 ryanodine receptor (RyR1) in IMCD was obtained by immunofluorescence, immunoblotting, and reverse transcription-polymerase chain reaction. Ryanodine (100 microm), a ryanodine receptor antagonist, blocked the arginine vasopressin-mediated increase in P(f) and blocked vasopressin-stimulated redistribution of aquaporin-2 to the plasma membrane domain in primary cultures of IMCD cells, as assessed by immunofluorescence immunocytochemistry. Calmodulin inhibitors (W7 and trifluoperazine) blocked the P(f) response to vasopressin and the vasopressin-stimulated redistribution of aquaporin-2. The results suggest that Ca(2+) release from ryanodine-sensitive stores plays an essential role in vasopressin-mediated aquaporin-2 trafficking via a calmodulin-dependent mechanism.
    Document Type:
    Reference
    Product Catalog Number:
    05-269
  • Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. 20044477

    5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and caffeine, which activate AMP-activated protein kinase (AMPK) and cause sarcoplasmic reticulum calcium release, respectively, have been shown to increase mitochondrial biogenesis in L6 myotubes. Nitric oxide (NO) donors also increase mitochondrial biogenesis. Since neuronal and endothelial NO synthase (NOS) are calcium dependent and are also phosphorylated by AMPK, we hypothesized that NOS inhibition would attenuate the activation of mitochondrial biogenesis in response to AICAR and caffeine. L6 myotubes either were not treated (control) or were exposed acutely or for 5 h/day over 5 days to 100 microM of N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), 100 microM S-nitroso-N-acetyl-penicillamine (SNAP) (NO donor) +/- 100 microM L-NAME, 2 mM AICAR +/- 100 microM L-NAME, or 5 mM caffeine +/- 100 microM L-NAME (n = 12/treatment). Acute AICAR administration increased (P less than 0.05) phospho- (P-)AMPK, but also increased P-CaMK, with resultant chronic increases in peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), cytochrome-c oxidase (COX)-1, and COX-4 protein expression compared with control cells. NOS inhibition, which had no effect on AICAR-stimulated P-AMPK, surprisingly increased P-CaMK and attenuated the AICAR-induced increases in COX-1 and COX-4 protein. Caffeine administration, which increased P-CaMK without affecting P-AMPK, increased COX-1, COX-4, PGC-1 alpha, and citrate synthase activity. NOS inhibition, surprisingly, greatly attenuated the effect of caffeine on P-CaMK and attenuated the increases in COX-1 and COX-4 protein. SNAP increased all markers of mitochondrial biogenesis, and it also increased P-AMPK and P-CaMK. In conclusion, AICAR and caffeine increase mitochondrial biogenesis in L6 myotubes, at least in part, via interactions with NOS.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. 25080500

    Transient receptor potential vanilloid family type 4 (TRPV4) channels are expressed in central neuroendocrine neurons and have been shown to be polymodal in other systems. We previously reported that in the rodent, a model of dilutional hyponatremia associated with hepatic cirrhosis, TRPV4 expression is increased in lipid rafts from the hypothalamus and that this effect may be angiotensin dependent. In this study, we utilized the immortalized neuroendocrine rat hypothalamic 4B cell line to more directly test the effects of angiotensin II (ANG II) on TRPV4 expression and function. Our results demonstrate the expression of corticotropin-releasing factor (CRF) transcripts, for sex-determining region Y (SRY) (male genotype), arginine vasopressin (AVP), TRPV4, and ANG II type 1a and 1b receptor in 4B cells. After a 1-h incubation in ANG II (100 nM), 4B cells showed increased TRPV4 abundance in the plasma membrane fraction, and this effect was prevented by the ANG II type 1 receptor antagonist losartan (1 μM) and by a Src kinase inhibitor PP2 (10 μM). Ratiometric calcium imaging experiments demonstrated that ANG II incubation potentiated TRPV4 agonist (GSK 1016790A, 20 nM)-induced calcium influx (control 18.4 ± 2.8% n = 5 and ANG II 80.5 ± 2.4% n = 5). This ANG II-induced increase in calcium influx was also blocked by 1 μM losartan and 10 μM PP2 (losartan 26.4 ± 3.8% n = 5 and PP2 19.7 ± 3.9% n = 5). Our data suggests that ANG II can increase TRPV4 channel membrane expression in 4B cells through its action on AT1R involving a Src kinase pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. 22904064

    Arginine methylation of histones is a well-known regulator of gene expression. Protein arginine methyltransferase 6 (PRMT6) has been shown to function as a transcriptional repressor by methylating the histone H3 arginine 2 [H3R2(me2a)] repressive mark; however, few targets are known. To define the physiological role of PRMT6 and to identify its targets, we generated PRMT6(-/-) mouse embryo fibroblasts (MEFs). We observed that early passage PRMT6(-/-) MEFs had growth defects and exhibited the hallmarks of cellular senescence. PRMT6(-/-) MEFs displayed high transcriptional levels of p53 and its targets, p21 and PML. Generation of PRMT6(-/-); p53(-/-) MEFs prevented the premature senescence, suggesting that the induction of senescence is p53-dependent. Using chromatin immunoprecipitation assays, we observed an enrichment of PRMT6 and H3R2(me2a) within the upstream region of Trp53. The PRMT6 association and the H3R2(me2a) mark were lost in PRMT6(-/-) MEFs and an increase in the H3K4(me3) activator mark was observed. Our findings define a new regulator of p53 transcriptional regulation and define a role for PRMT6 and arginine methylation in cellular senescence.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple