Skip to Content
Merck

703206

cis-Bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II)

Synonym(s):

Greatcell Solar®, N-3 dye

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C26H16N6O8RuS2
CAS Number:
Molecular Weight:
705.64
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352103
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

VMISXESAJBVFNH-UHFFFAOYSA-N

SMILES string

S=C=N[Ru]N=C=S.OC(=O)c1ccnc(c1)-c2cc(ccn2)C(O)=O.OC(=O)c3ccnc(c3)-c4cc(ccn4)C(O)=O

InChI

1S/2C12H8N2O4.2CNS.Ru/c2*15-11(16)7-1-3-13-9(5-7)10-6-8(12(17)18)2-4-14-10;2*2-1-3;/h2*1-6H,(H,15,16)(H,17,18);;;/q;;2*-1;+2

assay

95% (NMR)

form

powder

mp

>300 °C

λmax

534, 395, 312 nm (lit.)

Quality Level

General description

cis-Bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N3 dye) is a ruthenium polypyridyl based complex that can be used as a sensitizer. It is a highly stable polymer in which the photocurrent decreases with an increase in the concentration of N3 dye.

Application

N3 dye can be coated on electrodes for improving the sensitivity of the dye sensitized solar cells (DSSCs) which can further enhance the power conversion efficiency (PCE).

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Dyesol is a registered trademark of Greatcell Solar

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

703206-250MG: + 703206-BULK: + 703206-VAR: + 703206-1G:

jan


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites
Ardo S, et al.
Journal of the American Chemical Society, 132(19), 6696-6709 (2010)
Ruthenium (II) Charge-Transfer Sensitizers Containing 4, 4 `-Dicarboxy-2, 2 `-bipyridine. Synthesis, Properties, and Bonding Mode of Coordinated Thio-and Selenocyanates
Kohle O, et al.
Inorganic Chemistry, 35(16), 4779-4787 (1996)
Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells
Kopidakis N, et al.
The Journal of Physical Chemistry B, 107(41), 11307-11315 (2003)
On the role of metal contacts in solar cells based on titanium dioxide and di-(isothiocyanate)-bis-(2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II)
Logunov AA, et al.
Semiconductors, 48(5), 683-685 (2014)
Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements
Zaban A, et al.
ChemPhysChem, 4(8), 859-864 (2003)

Articles

Operation principle and market dominance of single crystalline silicon solar cells.

Dye-sensitized solar cells directly convert sunlight to electricity

Organic materials in optoelectronic devices like LEDs and solar cells are of significant academic and commercial interest.

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service