Skip to Content
Merck

793663

Graphene dispersion

greener alternative

forinkjet printing, with ethyl cellulose in cyclohexanone and terpineol, inkjetprintable

Synonym(s):

inkjetting ink, conductive ink

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

UNSPSC Code:
12352103
NACRES:
NA.23
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Graphene ink, for inkjet printing, with ethyl cellulose in cyclohexanone and terpineol, inkjet printable

SMILES string

OC(C1=C2C(C3=C(C4=C(C5=C(C6=C(C7=C(C8=C(C9=C(C%10=C(C%11=C(C%12=C(C%13=C(C%14=C(C%15=CC=C%16O)C%16=C%17)C%17=C%18)C%18=C%19C(O)=O)C%19=C%20)C%20=C%21O)C%21=C%22)C%22=C%23)C%23=C%24O)C%24=C%25)C%25=C%26C(O)=O)C%26=C%27)C%27=C2)=C%28C%29=C(C%30=C%31C%28=C%3

description

Electrodes

form

liquid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

2.4 wt. % (solid (graphene and ethyl cellulose) in cyclohexanone/terpineol)

resistivity

0.003-0.008 Ω-cm (thermally annealed 250°C for 30 minutes, film thickness >100 nm)

particle size

≤3 μm

surface tension

30 dyn/cm

viscosity

8-15 mPa.s(30 °C)

bp

213-218 °C (Terpineol)

density

0.9375 g/mL at 25 °C

greener alternative category

Quality Level

Looking for similar products? Visit Product Comparison Guide

General description

Inkjet printable graphene dispersion is a promising candidate for organic and printed electronics in a variety of applications such as sensors, conductors, supercapacitors etc. Graphene-based functional devices and films can be designed by the inkjet printing process, by a controlled expulsion of the fluid from the nozzle.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Graphene inks are highly conductive, low cost and super flexible. Click here for more information.

Application

Formulated for Inkjet printing.
Curing Condition: 250-350°C, 20-30min

This ink was tested on polyimide and silicon dioxide substrates.

Legal Information

Sold under Material Transfer Agreement with Mark Hersam group at Northwestern University. 

pictograms

CorrosionExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

10 - Combustible liquids

wgk

WGK 2

flash_point_f

143.6 °F

flash_point_c

62 °C


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

Group 4: Flammable liquids + Type 2 petroleums + Hazardous rank III + Water insoluble liquid

fsl

Substances Subject to be Indicated Names

ishl_indicated

Substances Subject to be Notified Names

ishl_notified

793663-VAR: + 793663-BULK: + 793663-5ML:4548173340975

jan


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics
Ethan B. Secor , Bok Y. Ahn , Theodore Z. Gao , Jennifer A. Lewis , and Mark C. Hersam
Advanced Materials, 27, 6683-6688 (2015)
Inkjet Printing of High Conductivity, Flexible Graphene Patterns.
Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, et al.
The Journal of Physical Chemistry Letters, 4(8), 1347-1351 (2013)
High-Performance Solid-State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks
Lei Li, Ethan B. Secor, Kan-Sheng Chen, Jian Zhu, Xiaolong Liu, Theodore Z. Gao
Advanced Energy Materials, 6, N/A-N/A (2016)
Efficient inkjet printing of graphene.
Li J
Advanced Materials, 25(29), 3985-3992 (2013)

Articles

Advances in scalable synthesis and processing of two-dimensional materials

Graphene's unique properties spark interdisciplinary interest; its honeycomb structure offers electrical, optical, and mechanical marvels.

Graphene is a unique two-dimensional (2D) structure of monolayer carbon atoms packed into a dense honeycomb crystal that has attracted great interest due to its diverse and fascinating properties.

Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service