Skip to Content
Merck

A2056

Acetyl coenzyme A trisodium salt

≥93% (HPLC), powder

Synonym(s):

Acetyl-S- CoA, Acetyl CoA

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C23H35N7O17P3S · 3Na
CAS Number:
Molecular Weight:
875.52
NACRES:
NA.51
PubChem Substance ID:
UNSPSC Code:
41106305
MDL number:
Form:
powder
Assay:
≥93% (HPLC)
Solubility:
H2O: 100 mg/mL
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Acetyl coenzyme A trisodium salt, ≥93% (HPLC), powder

InChI

1S/C23H38N7O17P3S.Na/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30;/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38);/q;+1/p-1/t13-,16-,17-,18?,22-;/m1./s1

SMILES string

O[C@H]1[C@](O[C@@H]([C@H]1OP(O)(O)=O)COP(OP(OCC(C)(C)[C@@H](O)C(NCCC(NCCSC(C)=O)=O)=O)(O)=O)(O)=O)([H])N2C3=NC=NC(N)=C3N=C2.[3Na]

InChI key

HNLIOWFIXSPFEC-WLYMNMRISA-M

assay

≥93% (HPLC)

form

powder

solubility

H2O: 100 mg/mL

storage temp.

−20°C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. Acetyl CoA is formed either by the oxidative decarboxylation of pyruvate in mitochondria, by the oxidation of long-chain fatty acids, or by the oxidative degradation of certain amino acids. Acetyl-CoA is the starting compound for the citric acid cycle (Krebs cycle). Acetyl CoA is also a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. Acetyl-CoA positively regulates the activity pyruvate carboxylase. Acetyl CoA is a precursor of the neurotransmitter acetylcholine. Histone acetylases (HAT) use Acetyl-CoA as the donor for the acetyl group use in the post-translational acetylation reactions of histone and non-histone proteins.
An essential cofactor in enzymatic acetyl transfer reactions.

Biochem/physiol Actions

Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions.
Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. It is formed either by the oxidative decarboxylation of pyruvate in mitochondria, by the oxidation of long-chain fatty acids, or by the oxidative degradation of certain amino acids. Acetyl-CoA is the starting compound for the citric acid cycle (Kreb′s cycle). It is also a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. Acetyl-CoA positively regulates the activity pyruvate carboxylase. It is a precursor of the neurotransmitter acetylcholine. Histone acetylases (HAT) use Acetyl-CoA as the donor for the acetyl group use in the post-translational acetylation reactions of histone and non-histone proteins.

Other Notes

For more more technical information and a complete list of Coenzyme A deriviatives visit the Acyl Transfer Reagents Resource.

Preparation Note

Prepared enzymatically

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Virupakshi Soppina et al.
PloS one, 7(10), e48204-e48204 (2012-10-31)
The αβ-tubulin subunits of microtubules can undergo a variety of evolutionarily-conserved post-translational modifications (PTMs) that provide functional specialization to subsets of cellular microtubules. Acetylation of α-tubulin residue Lysine-40 (K40) has been correlated with increased microtubule stability, intracellular transport, and ciliary
Prabhjot Singh et al.
Protein and peptide letters, 18(5), 507-517 (2011-01-18)
The distinct biochemical function of endoplasmic reticulum (ER) protein Calreticulin (CR) catalyzing the transfer of acyl group from acyloxycoumarin to a receptor protein was termed calreticulin transacylase (CRTAase). The present study, unlike the previous reports of others utilizing CR-deficient cells
Juliette Adjo Aka et al.
Handbook of experimental pharmacology, 206, 1-12 (2011-09-01)
Lysine (K) acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue. This is posttranslational and reversible, with its level dynamically maintained by lysine acetyltransferases (KATs) and deacetylases (KDACs). Traditionally, eukaryotic KDACs
Prabodh Sadana et al.
ACS chemical biology, 6(10), 1096-1106 (2011-08-06)
Thyroid hormone (T3) mediates diverse physiological functions including growth, differentiation, and energy homeostasis through the thyroid hormone receptors (TR). The TR binds DNA at specific recognition sequences in the promoter regions of their target genes known as the thyroid hormone
Whitney R Luebben et al.
Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19254-19259 (2010-10-27)
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally

Articles

Sigma article discusses tumor cell metabolic pathways, focusing on aerobic glycolysis and mitochondrial activity.

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Protocols

To measure chloramphenicol acetyltransferase activity, this procedure uses DTNB and coenzyme A. The reaction of DTNB with the –SH group on CoA results in a colorimetric increase at 412 nm.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service