Saltar al contenido
Merck

Silica nanoparticles: preparation, characterization and in vitro/in vivo biodistribution studies.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2015-02-15)
B I Tamba, A Dondas, M Leon, A N Neagu, G Dodi, C Stefanescu, A Tijani
RESUMEN

The current progress in pharmaceutical nanotechnology field has been exploited in the design of functionalized radiolabelled nanoparticles that are able to deliver radionuclides in a selective manner to improve the outcome of diagnosis and treatment. Silica nanoparticles (SNPs) have been widely developed for biomedical applications due to their high versatility, excellent functional properties and low cost production, with the possibility to control different topological parameters relevant for multidisciplinary applications. The aim of the present study was to characterize and evaluate both in vitro, by microscopy techniques, and in vivo, by scintigraphic imaging, the biodistribution of silica nanostructures derivatives (Cy5.5 conjugated SNPs and (99m)Tc radiolabelled SNPs) to be applied as radiotracers in biomedicine. SNPs were synthesized by hydrolysis and condensation of silicon alkoxides, followed by surface functionalization with amino groups available for fluorescent dye and radiolabelling possibility. Our data showed the particles size distribution (200-350 nm), the surface charge (negative for bare and fluorescent SNPs and positive for amino SNPs), polydispersity index (broad distribution), the qualitative composition and the toxicity assessments (safe material) that made the obtained SNPs candidates for in vitro/in vivo studies. A high uptake of fluorescent SNPs in all the investigated organs was evidenced by confocal microscopy. The (99m)Tc radiolabelled SNPs biodistribution was quantified in the range of 12-100% counts/g organ using the scintigraphic images. The obtained results reveal improved properties, namely, reduced toxicity with a low level of side effects, an improved biodistribution, high labelling efficiency and stability of the radiolabelled SNPs with potential to be applied in biomedical science, particularly in nuclear medicine as a radiotracer.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Sacarosa, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Bromuro de potasio, ≥99% trace metals basis
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
(3-aminopropil)trietoxisilano, 99%
Sigma-Aldrich
Ammonia solution, 7 N in methanol
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarosa, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Bromuro de potasio, ACS reagent, ≥99.0%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Supelco
Sacarosa, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sacarosa, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Millipore
Sacarosa, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Sacarosa, ACS reagent
Sigma-Aldrich
(3-aminopropil)trietoxisilano, ≥98.0%
Sigma-Aldrich
Ammonia solution, 2.0 M in ethanol
Supelco
Etanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Alcohol etílico puro, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Sigma-Aldrich
(3-aminopropil)trietoxisilano, ≥98%
Sigma-Aldrich
Ammonia solution, 0.4 M in dioxane
Sigma-Aldrich
Bromuro de potasio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Ammonia solution, 4 M in methanol