Skip to Content
Merck

P2660000

Povidone

European Pharmacopoeia (EP) Reference Standard

Synonym(s):

Polyvinylpyrrolidone, PVP, Polyvidone, Povidone

Sign In to View Organizational & Contract Pricing.

Select a Size



About This Item

Linear Formula:
(C6H9NO)n
CAS Number:
UNSPSC Code:
41116107
NACRES:
NA.24
MDL number:

Product Name

Povidone, European Pharmacopoeia (EP) Reference Standard

InChI

1S/C6H9NO/c1-2-7-5-3-4-6(7)8/h2H,1,3-5H2

SMILES string

C=CN1CCCC1=O

InChI key

WHNWPMSKXPGLAX-UHFFFAOYSA-N

grade

pharmaceutical primary standard

API family

povidone

manufacturer/tradename

EDQM

application(s)

pharmaceutical (small molecule)

format

neat

Looking for similar products? Visit Product Comparison Guide

Application

Povidone EP Reference standard, intended for use in laboratory tests only as specifically prescribed in the European Pharmacopoeia.

General description

This product is provided as delivered and specified by the issuing Pharmacopoeia. All information provided in support of this product, including SDS and any product information leaflets have been developed and issued under the Authority of the Issuing Pharmacopoeia. For further information and support please go to the website of the issuing Pharmacopoeia.

Other Notes

Polyvinylpyrrolidone is a component of Denhardt′s Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution.
Sales restrictions may apply.

Packaging

The product is delivered as supplied by the issuing Pharmacopoeia. For the current unit quantity, please visit the EDQM reference substance catalogue.

Storage Class

11 - Combustible Solids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

K Yamashita et al.
Die Pharmazie, 68(1), 54-57 (2013-03-01)
The fullerene C60 is used in consumer products such as cosmetics owing to its antioxidative effects and is being developed for nanomedical applications. However, knowledge regarding the safety of fullerene C60, especially after oral administration, is sparse. Here, we examined
S Fardindoost et al.
Nanotechnology, 24(13), 135201-135201 (2013-03-13)
In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 μm, we observed a resonance
Huan-Xiang Zhou
FEBS letters, 587(5), 394-397 (2013-01-29)
Recently a polymer crowder and two protein crowders were found to have opposite effects on the folding stability of chymotrypsin inhibitor 2 (CI2), suggesting that they interact differently with CI2. Here we propose that all the macromolecular crowders act similarly
Doris Bach et al.
Journal of photochemistry and photobiology. B, Biology, 120, 74-81 (2013-03-08)
Photodynamic therapy (PDT) is a local tumour treatment accepted for a number of indications. PDT operates via the cellular stress response through the production of reactive oxygen species and subsequent cellular damage, resulting in cell death. Although PDT-induced signalling and
Chun-Mei Zhao et al.
Environmental toxicology and chemistry, 32(4), 913-919 (2013-01-25)
The toxicity of manufactured silver nanoparticles (AgNPs) has been widely studied, but the influence of AgNPs on the major ions (such as sodium [Na] and calcium [Ca]) regulations are unknown. In the present study, a freshwater cladoceran Daphnia magna was

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service