Select a Size
All Photos(1)
About This Item
Empirical Formula (Hill Notation):
C9H6Cl2N2OS
CAS Number:
Molecular Weight:
261.13
NACRES:
NA.77
PubChem Substance ID:
UNSPSC Code:
12352200
MDL number:
Product Name
OGG1 Inhibitor O8, ≥98% (HPLC)
InChI
1S/C9H6Cl2N2OS/c10-4-2-1-3-5-6(4)7(11)8(15-5)9(14)13-12/h1-3H,12H2,(H,13,14)
SMILES string
ClC1=C(C(NN)=O)SC2=CC=CC(Cl)=C21
InChI key
HSSHUDKWJRJKPV-UHFFFAOYSA-N
assay
≥98% (HPLC)
form
powder
color
white to beige
solubility
DMSO: 5 mg/mL, clear
storage temp.
2-8°C
Quality Level
Related Categories
Biochem/physiol Actions
OGG1 Inhibitor O8 is a potent inhibitor of 8-Oxoguanine DNA Glycosylase-1 (OGG1), part of the DNA base excision repair (BER) pathway that is becoming a drug target for cancer therapy.
OGG1 Inhibitor O8 is a potent inhibitor of 8-Oxoguanine DNA Glycosylase-1 (OGG1), part of the DNA base excision repair (BER) pathway that is becoming a drug target for cancer therapy. OGG1 Inhibitor O8 has an IC50 value of 220 nM and >100-fold selectivity for OGG1 relative to several other DNA repair glycosylases. O8 acts through the inhibition of Schiff base formation during OGG1 catalysis. It does not prevent DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate.
General description
Inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) can be used in monotherapy or in combination therapy to treat some types of cancer.
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
target_organs
Respiratory system
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Mingxin Chang et al.
Frontiers in pharmacology, 11, 610205-610205 (2021-02-02)
Background: Oncogenic transformation is associated with elevated oxidative stress that promotes tumor progression but also renders cancer cells vulnerable to further oxidative insult. Agents that stimulate ROS generation or suppress antioxidant systems can drive oxidative pressure to toxic levels selectively
Nathan Donley et al.
ACS chemical biology, 10(10), 2334-2343 (2015-07-29)
The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest
Xu Zheng et al.
Journal of innate immunity, 1-22 (2022-05-06)
The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood.
Yaoyao Xue et al.
Frontiers in immunology, 14, 1161160-1161160 (2023-08-21)
Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine
Wenjing Hao et al.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(6), 7427-7441 (2020-05-08)
8-Oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair (BER) is the primary pathway to remove the pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Recent studies documented 8-oxoG serves as an epigenetic-like mark and OGG1 modulates gene expression in oxidatively stressed cells. For this
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service