Select a Size
All Photos(1)
About This Item
Empirical Formula (Hill Notation):
C20H12N2O3S
CAS Number:
Molecular Weight:
360.39
UNSPSC Code:
12352200
NACRES:
NA.77
MDL number:
Product Name
A-769662, ≥98% (HPLC)
SMILES string
[s]1c2[nH][c](c(c(c2c(c1)c3ccc(cc3)c4c(cccc4)O)O)C#N)=O
InChI
1S/C20H12N2O3S/c21-9-14-18(24)17-15(10-26-20(17)22-19(14)25)12-7-5-11(6-8-12)13-3-1-2-4-16(13)23/h1-8,10,23H,(H2,22,24,25)
InChI key
CTESJDQKVOEUOY-UHFFFAOYSA-N
assay
≥98% (HPLC)
form
powder
color
white to very dark brown
solubility
DMSO: 2 mg/mL, clear
storage temp.
−20°C
Looking for similar products? Visit Product Comparison Guide
Related Categories
Biochem/physiol Actions
A-769662 is a potent, β1 subunit-selective, allosteric drug and metabolite (ADaM) site AMPK activator (α1β1γ1 EC50/Emax = 0.15 μM/1.99 vs. 4.51 μM/2.19 with AMP) that promotes a Thr172 phosphorylation in a β1 carbohydrate binding module (CBM) Ser108 phosphorylation-dependent manner. A769662 synergizes with AMP as well as C2 (AMP mimetic) toward Thr172 dephosphorylated/Ser108 phosphorylated AMPK. A-769662 is widely employed in probing AMPK β1 complexes-mediated cellular signaling in cultures (conc range: 1 μM-1 mM) as well as AMPK-dependent physiological and pathological processes in mice and rats in vivo (dosing range: 1-30 mg/kg i.p.).
Potent, β1-selective, allosteric drug and metabolite (ADaM) site AMP-activated protein kinase (AMPK) activator in cultures and in vivo.
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Nadia Boudaba et al.
EBioMedicine, 28, 194-209 (2018-01-19)
Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role
Frank A Duca et al.
Nature medicine, 21(5), 506-511 (2015-04-08)
Metformin is a first-line therapeutic option for the treatment of type 2 diabetes, even though its underlying mechanisms of action are relatively unclear. Metformin lowers blood glucose levels by inhibiting hepatic glucose production (HGP), an effect originally postulated to be
Davide Di Fusco et al.
Clinical science (London, England : 1979), 132(11), 1155-1168 (2018-03-16)
Metformin, a hypoglycemic drug used for treatment of type 2 diabetes, regulates inflammatory pathways. By using several models of intestinal inflammation, we examined whether metformin exerts anti-inflammatory effects and investigated the basic mechanism by which metformin blocks pathologic signals. Colitic
Christopher G Langendorf et al.
Nature communications, 7, 10912-10912 (2016-03-10)
The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined
John W Scott et al.
Chemistry & biology, 15(11), 1220-1230 (2008-11-22)
The AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service