콘텐츠로 건너뛰기
Merck

G3893

Anti-Glial Fibrillary Acidic Protein Antibody

mouse monoclonal, G-A-5

동의어(들):

Anti Gfap, Anti-Gfap, GFAP Antibody - Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) antibody produced in mouse, Gfap Antibody, Glial Fibrillary Acidic Protein Antibody, Anti-GFAP

조직 및 계약 가격을 보려면 로그인를 클릭합니다.

크기 선택


제품정보 (DICE 배송 시 비용 별도)

UNSPSC Code:
12352203
NACRES:
NA.41
Clone:
G-A-5, monoclonal
Conjugate:
unconjugated
Application:
ARR, ICC, IF, IHC
Citations:
1427
기술 서비스
도움이 필요하신가요? 저희 숙련된 과학자 팀이 도와드리겠습니다.
도움 문의
기술 서비스
도움이 필요하신가요? 저희 숙련된 과학자 팀이 도와드리겠습니다.
도움 문의

제품 이름

Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) antibody produced in mouse, clone G-A-5, ascites fluid

antibody product type

primary antibodies

clone

G-A-5, monoclonal

antibody form

ascites fluid

biological source

mouse

conjugate

unconjugated

species reactivity

rat, human, pig

technique(s)

immunoblotting: suitable, immunocytochemistry: suitable, immunohistochemistry: 1:400 using rat brain sections (alcohol-fixed), indirect immunofluorescence: suitable, microarray: suitable

isotype

IgG1

UniProt accession no.

shipped in

dry ice

storage temp.

−20°C

target post-translational modification

unmodified

Quality Level

Gene Information

human ... GFAP(2670)
rat ... Gfap(24387)

General description

Monoclonal anti-glial fibrillary acidic protein (GFAP) (mouse IgG1 isotype) is derived from the hybridoma produced by the fusion of mouse myeloma cells and splenocytes from an immunized mouse. GFAP is the intermediate filament expressed in astrocytes. The gene encoding it is localized on human chromosome 17q21.31.

The isotype is determined using ImmunoTypeTM Kit (Product Code ISO-1) and by a double diffusion immunoassay using Mouse Monoclonal Antibody Isotyping Reagents (Product Code ISO-2).

Intermediate filaments (IFs) with characteristic 10 nm diameter are a distinct class of molecularly heterogenous cytoskeletal filaments defined by ultrastructural, immunological, and biochemical criteria. Intermediate filaments differ significantly from the other cytoskeletal elements of the cell, namely microtubules and microfilaments, and are components of most eukaryotic cells. GFAP (molecular weight of 50 kDa) is the cell specific IF protein in astrocytes.

Immunogen

GFAP from pig spinal cord

Application

Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) antibody produced in mouse is suitable for immunohistochemistry at a working dilution of 1:400 using rat brain sections (alcohol-fixed) and microarray analysis. It may be used for immunocytochemical localization of GFAP in human, pig, and rat tissues. It is also suitable for localization of GFAP using immunoblot assays. In indirect immunofluorescent labeling on alcohol-fixed or frozen sections, this antibody stains astrocytes and Bergmann glia cells, gliomas, and other glial cell derived tumors.
The antibody was used as a primary antibody in immunocytochemistry analysis:
  • of primary cerebral microvascular EC cultures to study the effect of microglia on the BBB (blood-brain barrier) and its primary constituents
  • to study the wound healing effects of matrix metalloproteinase-2 that promote recovery after spinal cord injury
  • to study the negative regulation of embryonic neural progenitor cell proliferation by Toll-like receptor 3

Biochem/physiol Actions

The antibody reacts specifically with GFAP in immunoblotting assays and labels astrocytes, Bergmann glia cells and chondrocytes of elastic cartilage in immunohistochemical staining. The antibody reacts with glial specific antigen in frozen or alcohol-fixed tissue sections.
The gene GFAP encodes an intermediate filament protein (50kDa) of mature astrocytes, which may be used as a marker for distinguishing astrocytes from other glial cells during development of the central nervous system. Defects in this gene causes Alexander disease. It is a rare disorder of astrocytes in the CNS.

Physical form

Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) is provided as ascites fluid containing 15 mM sodium azide as a preservative.

Preparation Note

For continuous use, store at 2-8 °C for up to one month. For extended storage, the solution may be frozen in working aliquots. Repeated freezing and thawing is not recommended. Storage in "frost-free" freezers is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

적합한 제품을 찾을 수 없으신가요?  

당사의 제품 선택기 도구.을(를) 시도해 보세요.

저장 등급

10 - Combustible liquids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions.
Moeton M, et al.
Cellular and Molecular Life Sciences, 73(21) (2016)
TWO CASES WITH DIFFERENT EPILEPSY TYPE AND
DYSMORPHIC FEATURES ASSOCIATED WITH
17q21.31 MICRODELETION SYNDROME
E. UCTEPE, et al.
Genetic Counseling (Geneva, Switzerland), 27(3) (2016)
Midori A Yenari et al.
Stroke, 37(4), 1087-1093 (2006-02-25)
Blood-brain barrier (BBB) disruption after stroke can worsen ischemic injury by increasing edema and causing hemorrhage. We determined the effect of microglia on the BBB and its primary constituents, endothelial cells (ECs) and astrocytes, after ischemia using in vivo and
Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP.
Lin N H, et al.
PLoS ONE, 12(7), e0180694-e0180694 (2017)
Fernando Ezquer et al.
Addiction biology, 24(5), 994-1007 (2018-09-22)
Chronic ethanol consumption leads to brain oxidative stress and neuroinflammation, conditions known to potentiate and perpetuate each other. Several studies have shown that neuroinflammation results in increases in chronic ethanol consumption. Recent reports showed that the intra-cerebroventricular administration of mesenchymal

문서

Frequently asked questions about neural stem cells including NSC derivation, expansion and differentiation.

관련 콘텐츠

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.