Millipore Sigma Vibrant Logo
 

104091-08-9


348 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (348)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. 10409180

    We have examined the changes in quantity and activity of cardiac sarcolemmal (SL) phosphoinositide-phospholipase C (PLC)-beta(1), -gamma(1), and -delta(1) in a model of congestive heart failure (CHF) secondary to large transmural myocardial infarction (MI). We also instituted a late in vivo monotherapy with imidapril, an ANG-converting enzyme (ACE) inhibitor, to test the hypothesis that its therapeutic action is associated with the functional correction of PLC isoenzymes. SL membranes were purified from the surviving left ventricle of rats in a moderate stage of CHF at 8 wk after occlusion of the left anterior descending coronary artery. SL PLC isoenzymes were examined in terms of protein mass and hydrolytic activity. CHF resulted in a striking reduction (to 6-17% of controls) of the mass and activity of gamma(1)- and delta(1)-isoforms in combination with a significant increase of both PLC beta(1) parameters. In vivo treatment with imidapril (1 mg/kg body wt, daily, initiated 4 wk after coronary occlusion) improved the contractile function and induced a partial correction of PLCs. The mass of SL phosphatidylinositol 4,5-bisphosphate and the activities of the enzymes responsible for its synthesis were significantly reduced in post-MI CHF and partially corrected by imidapril. The results indicate that profound changes in the profile of heart SL PLC-beta(1), -gamma(1), and -delta(1) occur in CHF, which could alter the complex second messenger responses of these isoforms, whereas their partial correction by imidapril may be related to the mechanism of action of this ACE inhibitor.
    Document Type:
    Reference
    Product Catalog Number:
    05-164
    Product Catalog Name:
    Anti-PLCβ-1 Antibody
  • Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. 19666479

    The CDC14 family of multifunctional evolutionarily conserved phosphatases includes major regulators of mitosis in eukaryotes and of DNA damage response in humans. The CDC14 function is also crucial for accurate chromosome segregation, which is exemplified by its absolute requirement in yeast for the anaphase segregation of nucleolar organizers; however the nature of this essential pathway is not understood. Upon investigation of the rDNA nondisjunction phenomenon, it was found that cdc14 mutants fail to complete replication of this locus. Moreover, other late-replicating genomic regions (10% of the genome) are also underreplicated in cdc14 mutants undergoing anaphase. This selective genome-wide replication defect is due to dosage insufficiency of replication factors in the nucleus, which stems from two defects, both contingent on the reduced CDC14 function in the preceding mitosis. First, a constitutive nuclear import defect results in a drastic dosage decrease for those replication proteins that are regulated by nuclear transport. Particularly, essential RPA subunits display both lower mRNA and protein levels, as well as abnormal cytoplasmic localization. Second, the reduced transcription of MBF and SBF-controlled genes in G1 leads to the reduction in protein levels of many proteins involved in DNA replication. The failure to complete replication of late replicons is the primary reason for chromosome nondisjunction upon CDC14 dysfunction. As the genome-wide slow-down of DNA replication does not trigger checkpoints [Lengronne A, Schwob E (2002) Mol Cell 9:1067-1078], CDC14 mutations pose an overwhelming challenge to genome stability, both generating chromosome damage and undermining the checkpoint control mechanisms.,
    Document Type:
    Reference
    Product Catalog Number:
    MAB3034
    Product Catalog Name:
    Anti-DNA Antibody, single stranded, clone 16-19
  • The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. 12829647

    Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion in a glucose-dependent manner, but its short half-life limits its therapeutic potential. We tested NN2211, a long-acting GLP-1 derivative, in 10 subjects with type 2 diabetes (means +/- SD: age 63 +/- 8 years, BMI 30.1 +/- 4.2 kg/m(2), HbA(1c) 6.5 +/- 0.8%) in a randomized, double-blind, placebo-controlled, crossover study. A single injection (7.5 micro g/kg) of NN2211 or placebo was administered 9 h before the study. beta-cell sensitivity was assessed by a graded glucose infusion protocol, with glucose levels matched over the 5-12 mmol/l range. Insulin secretion rates (ISRs) were estimated by deconvolution of C-peptide levels. Findings were compared with those in 10 nondiabetic volunteers during the same glucose infusion protocol. In type 2 diabetic subjects, NN2211, in comparison with placebo, increased insulin and C-peptide levels, the ISR area under the curve (AUC) (1,130 +/- 150 vs. 668 +/- 106 pmol/kg; P 0.001), and the slope of ISR versus plasma glucose (1.26 +/- 0.36 vs. 0.54 +/- 0.18 pmol x l[min(-1) x mmol(-1) x kg(-1)]; P 0.014), with values similar to those of nondiabetic control subjects (ISR AUC 1,206 +/- 99; slope of ISR versus plasma glucose, 1.44 +/- 0.18). The long-acting GLP-1 derivative, NN2211, restored beta-cell responsiveness to physiological hyperglycemia in type 2 diabetic subjects.
    Document Type:
    Reference
    Product Catalog Number:
    GL-32K
    Product Catalog Name:
    Glucagon RIA