Millipore Sigma Vibrant Logo
 

1343-88-0


360 Results Gelişmiş Arama  
Showing
Dokümanlar (358)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. 24107938

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H(+) via an unidentified pH-sensitive background K(+) channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K(+) channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2(-/-) mice (n = 49 of 88) could be classified as pH sensitive (greater than 30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2(-/-) mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K(+) currents were reduced in amplitude in RTN neurons from TASK-2(-/-) mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart-brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2(-/-) mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold.
    Document Type:
    Reference
    Product Catalog Number:
    AB1542
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody
  • Salmon Sperm DNA/Protein A Agarose

    Document Type:
    Certificate of Analysis
    Lot Number:
    3153256
    Product Catalog Number:
    16-157
    Product Catalog Name:
    Protein A Agarose/Salmon Sperm DNA, 2.5 mL
  • Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development. 14973293

    Cell migration plays an important role during the development of the retina. In this work we have studied the migration of newborn horizontal cells in avian embryonic retina. Using the pattern of the early expressed transcription factors Lim1 and Prox1 we have shown that horizontal cells migrate bi-directionally from their site of birth, close to the ventricular side, to the adjacent (vitreal) side of the neuroepithelium, where they align just next to the prospective ganglion cell layer before migrating back again to their final laminar position in the external part of the inner nuclear layer. The migration occurs between Hamburger and Hamilton stages 24 and 33, which is equivalent to embryonic day 4.5 and 8. Between stages 26 and 30 the horizontal cells reside close to the ganglion cell layer and intra ocular injections of a cytochalasin D, an actin polymerisation blocker that inhibit migration, at stage 29 interfered with the migration of the horizontal cells to their final destination. Furthermore, using biolistic gene transfer with a green fluorescence protein expression vector of retinal slices we were able to record ventricle-directed migration by time-lapse microscopy. Combining biolistics with immunohistochemistry we showed that transfected cells, which have also been translocated in a ventricular direction were positive for the horizontal cell markers Lim1 and Prox1. The alternative path of migration that is described in this work differs from the generally accepted one for horizontal cells and this knowledge will influence the view of how the molecular determination of horizontal cells is specified.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1585
    Product Catalog Name:
    Anti-Brn-3a Antibody, POU-domain protein, clone 5A3.2
  • West Nile virus inhibits the signal transduction pathway of alpha interferon. 15650160

    West Nile virus (WNV) is a human pathogen that can cause neurological disorders, including meningoencephalitis. Experiments with mice and mammalian cell cultures revealed that WNV exhibited resistance to the innate immune program induced by alpha interferon (IFN-alpha). We have investigated the nature of this inhibition and have found that WNV replication inhibited the activation of many known IFN-inducible genes, because it prevented the phosphorylation and activation of the Janus kinases JAK1 and Tyk2. As a consequence, activation of the transcription factors STAT1 and STAT2 did not occur in WNV-infected cells. Moreover, we demonstrated that the viral nonstructural proteins are responsible for this effect. Thus, our results provided an explanation for the observed resistance of WNV to IFN-alpha in cells of vertebrate origin.
    Document Type:
    Reference
    Product Catalog Number:
    07-224
    Product Catalog Name:
    Anti-phospho-STAT2 (Tyr689) Antibody
  • Neuroprotective effect of neural stem cell-conditioned media in in vitro model of Huntington's disease. 18343580

    Although neural stem cell (NSC) transplantation has been investigated as a promising tool for reconstituting damaged brains, recent evidences suggest that NSCs may rescue the brain via paracrine effects rather than by direct cell replacements. In this study, we attempted to determine the neuroprotective effect of NSC-conditioned media (NSC-CM) in in vitro model of Huntington's disease. Cerebral hybrid neurons (A1) were transfected with either wild-type huntingtin (18 CAG repeats) or mutant huntingtin (100 CAG repeats). At 24h after the transfection, immunocytochemical patterns of the huntingtin aggregations, as well as the level of N-terminal proteolytic cleavages of huntingtin were analyzed. Neuronal apoptosis was evaluated with flowcytometry after Annexin-V and propidium iodide (PI) staining. Cerebral hybrid neurons transfected with mutant huntingtin showed five aggregates patterns, including diffuse cytoplasmic, dispered vacuoles, perinuclear vacuoles, nuclear inclusions (NI), and cytoplasmic inclusions (CI). NSC-CM reduced the levels of nuclear and cytoplasmic inclusions. The transfection with mutant huntingtin increased the level of N-terminal cleavages, which was reduced by the NSC-CM treatment. In addition, NSC-CM reduced the Annexin-V(+)PI(+) and Annexin-V(+)PI(-) neurons which were induced by the mutant huntingtin transfection. In summary, NSC-CM was neuroprotective in in vitro model of Huntington's disease with modulating mutant huntingtin-induced cytotoxicity.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5374
    Product Catalog Name:
    Anti-Huntingtin Protein Antibody, clone mEM48
  • Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients. 12060626

    Non-small cell lung cancer (NSCLC) is usually associated with a poor prognosis. Some patients survive their disease, and the underlying molecular mechanisms are still poorly understood. The purpose of this investigation was to evaluate expression profiles of proteins determining the survival of NSCLC patients for 5 years.
    Document Type:
    Reference
    Product Catalog Number:
    MABS194
    Product Catalog Name:
    Anti-c-K-Ras Antibody, clone 234-4.2