Millipore Sigma Vibrant Logo
 

247595-29-5


84 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (84)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. 19437543

    Type 1 insulin-like growth factor receptor (IGF1R) signaling in neuronal development was studied in mutant mice with blunted igf1r gene expression in nestin-expressing neuronal precursors. At birth [postnatal (P) day 0] brain weights were reduced to 37% and 56% of controls in mice homozygous (nes-igf1r(-/-)) and heterozygous (nes-igf1r(-/Wt)) for the null mutation, respectively, and this brain growth retardation persisted postnatally. Stereological analysis demonstrated that the volumes of the hippocampal formation, CA fields 1-3, dentate gyrus (DG), and DG granule cell layer (GCL) were decreased by 44-54% at P0 and further by 65-69% at P90 in nes-igf1r(-/Wt) mice. In nes-igf1r(-/-) mice, volumes were 29-31% of controls at P0 and, in the two mice that survived to P90, 6-19% of controls, although the hilus could not be identified. Neuron density did not differ among the mice at any age studied; therefore, decreased volumes were due to reduced cell number. In postnatal nes-igf1r(-/Wt) mice, the percentage of apoptotic cells, as judged by activated caspase-3 immunostaining, was increased by 3.5-5.3-fold. The total number of proliferating DG progenitors (labeled by BrdU incorporation and Ki67 staining) was reduced by approximately 50%, but the percentage of these cells was similar to the percentages in littermate controls. These findings suggest that 1) the postnatal reduction in DG size is due predominantly to cell death, pointing to the importance of the IGF1R in regulating postnatal apoptosis, 2) surviving DG progenitors remain capable of proliferation despite reduced IGF1R expression, and 3) IGF1R signaling is necessary for normal embryonic brain development.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3424
    Product Catalog Name:
    Anti-BrdU Antibody, clone AH4H7-1 / 131-14871
  • Induction of hyperlipidemia by intravenous infusion of tallow emulsion causes insulin resistance in Holstein cows. 17517713

    The objective was to test whether the induction of elevated blood nonesterified fatty acids (NEFA) by i.v. infusion of a tallow emulsion altered glucose tolerance and responsiveness to insulin in Holstein cows. Six non-lactating, nongestating Holstein cows were assigned to a crossover design. One cow was excluded before initiation of the experiment because of complications from mastitis. Treatments consisted of 11-h i.v. infusions of saline (control) or a 20% (wt/vol) triacylglycerol (TG) emulsion derived from tallow (tallow) to elevate plasma NEFA. Each period consisted of two 11-h infusions (INF1 and INF2), separated by 1 d in which cows were not infused. Intravenous glucose tolerance tests (IVGTT) and insulin challenges (IC) were performed 8 h after initiation of INF1 and INF2, respectively. The infusion of treatments continued during the 3 h of sampling for IVGTT and IC. Cows were fed every 4 h at a rate to meet energy requirements for 5 d prior to each period, and every 2 h during the first 8 h of infusions. Infusion of tallow induced hyperlipidemia by increasing plasma NEFA (295 +/- 9 vs. 79 +/- 7 microEq/L), serum TG (41.0 +/- 6 vs. 11.4 +/- 4.4 mg/dL), and glycerol (0.81 +/- 0.09 vs. 0.23 +/- 0.1 mg/dL) concentrations during INF1. During INF2, tallow treatment increased plasma NEFA (347 vs. 139 +/- 18 microEq/L), serum TG (20.8 +/- 4.6 vs. 13.1 +/- 2.3 mg/dL), and glycerol (0.88 +/- 0.04 vs. 0.31 +/- 0.02 mg/dL) concentrations. Induction of hyperlipidemia impaired glucose clearance during IVGTT, despite the greater endogenous insulin response to the glucose infusion, leading to a lower insulin sensitivity index [0.29 vs. 1.88 +/- 0.31 x 10(-4) min(-1)/(microIU/mL)]. Accordingly, hyperlipidemia impaired glucose clearance during IC (1.58 vs. 2.72 %/min), reflecting lower responsiveness to insulin. These data show that induction of hyperlipidemia causes insulin resistance in Holstein cows by impairing both sensitivity and maximum responsiveness to insulin. The induction of insulin resistance by TG, NEFA, or both may increase the availability of glucogenic nutrients to the periparturient dairy cow. Yet excessive elevation of NEFA may potentially lead adipocytes to become more insulin resistant, further increasing plasma NEFA concentration and the risk of metabolic disorders.
    Document Type:
    Reference
    Product Catalog Number:
    PI-12K
    Product Catalog Name:
    Porcine Insulin RIA
  • The Na+/K+-ATPase alpha2-isoform regulates cardiac contractility in rat cardiomyocytes. 17442282

    The presence of both alpha1- and alpha2-isoforms of the Na+/K+-ATPase (NKA) in cardiomyocytes indicates different functions. We hypothesized that preferential localization of the alpha2-isoform to the t-tubules, locally controlling the Na+/Ca2+-exchanger (NCX), underlies a specific role in Ca2+ handling.We studied NKA isoform distribution in isolated cardiomyocytes from Wistar rats using immunocytochemistry. NKA pump and NCX currents (I(pump) and I(NCX)) were measured in control and detubulated cardiomyocytes. Intracellular Na+ concentration [Na+]i was assessed with the fluorescent dye SBFI.The alpha2-isoform abundance was higher in the t-tubules than in the surface sarcolemma. We established that 0.3 microM ouabain specifically blocked the alpha2-isoform in isolated rat cardiomyocytes. This low concentration blocked 10.7+/-0.6% of I(pump) in control, but only 6.0+/-0.5% in detubulated cardiomyocytes. Moreover, measured and calculated alpha1-specific and alpha2-specific I(pump) in control (547+/-29 pA and 66 pA, respectively) and in detubulated cells (495+/-30 pA and 31 pA, respectively) showed that 53% of the alpha2-isoform, but only 9.5% of the alpha1-isoform, were localized to the t-tubules. Despite the small abundance of the alpha2-isoform (approximately 11% of total NKA), selective inhibition of this isoform induced a 40% increase in contractility in field stimulated cardiomyocytes, but no increase in global [Na+]i. However, inhibition of the alpha2-isoform increased I(NCX) indicating local subsarcolemmal accumulation of Na+ near NCX.The alpha2-isoform of the NKA is functionally coupled to the NCX and can regulate Ca2+ handling without changing global [Na+]i.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus. 18632798

    We previously generated transgenic mice carrying a large P1 artificial chromosome (PAC160) encompassing a 160-kb segment containing the human renin gene, two upstream genes, and one downstream gene. We also previously generated mutant PAC160 constructs lacking the distal enhancer and concluded it is required to maintain baseline expression of human renin, but is not required for tissue-specific, cell-specific, and regulated expression of renin in vivo. We now report two additional transgenic lines carrying random truncations of PAC160 upstream of the renin gene. Southern and PCR mapping studies indicate that the truncation break points in the two lines are located approximately 10.4 and 2.5 kb upstream of the renin gene causing a deletion of all DNA upstream of the break. We tested the hypothesis that large-scale deletion of DNA upstream of the human renin gene including the enhancer would cause dysregulation of human renin expression. Phenotypically, these truncations cause a severe dysregulation of human renin expression, but remarkably, a preservation of the normal tissue-specific expression of the human ethanolamine kinase 2 (ETNK2) gene which lies immediately downstream of renin. Several functional binding sites for CTCF, a mammalian insulator protein, were identified in and around the renin and ETNK2 loci by gel shift and chromatin immunoprecipitation. We conclude that there are sequences in and around the renin and ETNK2 loci which act as boundaries between neighboring genes which insulate them from each other. The study illustrates the value of taking a much wider genomic perspective when studying mechanisms regulating gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene. 18483185

    Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.
    Document Type:
    Reference
    Product Catalog Number:
    06-866
    Product Catalog Name:
    Anti-acetyl-Histone H4 Antibody
  • Anti-FAK

    Document Type:
    Certificate of Analysis
    Lot Number:
    2475592
    Product Catalog Number:
    04-591
  • High multivitamin intake by Wistar rats during pregnancy results in increased food intake and components of the metabolic syndrome in male offspring. 18525008

    The effect of high multivitamin intake during pregnancy on the metabolic phenotype of rat offspring was investigated. Pregnant Wistar rats (n=10 per group) were fed the AIN-93G diet with the recommended vitamin (RV) content or a 10-fold increase [high vitamin (HV) content]. In experiment 1, male and female offspring were followed for 12 wk after weaning; in experiment 2, only males were followed for 28 wk. Body weight (BW) was measured weekly. Every 4 wk, after an overnight fast, food intake over 1 h was measured 30 min after a gavage of glucose or water. An oral glucose tolerance test was performed every 3-5 wk. Postweaning fasting glucose, insulin, ghrelin, glucagon-like peptide-1, and systolic blood pressure were measured. No difference in BW at birth or litter size was observed. Food intake was greater in males born to HV dams (P0.05), and at 28 wk after weaning, BW was 8% higher (P0.05) and fat pad mass was 27% higher (P0.05). Food intake reduction after the glucose preload was nearly twofold less in males born to HV dams at 12 wk after weaning (P0.05). Fasting glucose, insulin, and ghrelin were 11%, 62%, and 41% higher in males from HV dams at 14 wk after weaning (P0.05). Blood glucose response was 46% higher at 23 wk after weaning (P0.01), and systolic blood pressure was 16% higher at 28 wk after weaning (P0.05). In conclusion, high multivitamin intake during pregnancy programmed the male offspring for the development of the components of metabolic syndrome in adulthood, possibly by its effects on central mechanisms of food intake control.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells. 18632735

    We previously found that the phosphorylation of ERK1/2 by submaximal concentrations of the muscarinic receptor ligand carbachol was potentiated in rat parotid acinar cells exposed to ouabain, a cardiac glycoside that inhibits the Na-K-ATPase. We now report that this signaling phenomenon involves the prevention of negative regulation of extracellular signal-regulated kinase-1/2 (ERK1/2) that is normally mediated by AMP-activated protein kinase (AMPK). Carbachol increases the turnover of the ATP-consuming Na-K-ATPase, reducing intracellular ATP and promoting the phosphorylation/activation of the energy sensor AMPK. Ouabain blocks the reduction in ATP and subsequent AMPK phosphorylation, which is regulated by the AMP-to-ATP ratio. The ouabain-promoted enhancement of ERK1/2 phosphorylation was not reproduced in Par-C10 cells, an immortalized rat parotid cell line that did not respond to carbachol with an ATP reduction and that employs an upstream AMPK kinase (Ca(2+)/calmodulin-dependent protein kinase kinase, CaMKK) different from that (LKB1) in native cells. In native parotid cells, inhibitory effects of AMPK on ERK1/2 signaling were examined by activating AMPK with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), which is converted to an AMP mimetic but does not alter parotid ATP levels. AICAR-treated cells display increases in AMPK phosphorylation and a reduced phosphorylation of ERK1/2 subsequent to activation of muscarinic and P2X(7) receptors, which promote increases in Na-K-ATPase turnover, but not upon epidermal growth factor receptor activation. These results suggest that carbachol-initiated AMPK activation can produce a negative feedback on ERK1/2 signaling in response to submaximal muscarinic receptor activation and that increases in fluid secretion can modulate receptor-initiated signaling events indirectly by producing ion transport-dependent decreases in ATP.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple