Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptosis in rats with pre-existing nonalcoholic steatohepatitis (NASH). This study investigated whether moderate alcohol intake alters SIRT1 activity, adiponectin/Adiponectin receptor (AdipoR)-related signaling and lipid metabolism in a pre-existing NASH status. Sprague-Dawley rats were fed with a high-fat diet (71% energy from fat) for 6 weeks to induce NASH then subsequently divided into 2 sub-groups: fed either a modified high-fat diet (HFD, 55% energy from fat) or a modified high-fat alcoholic diet (HFA, 55% energy from fat and 16% energy from ethanol) for an additional 4 weeks. We observed in comparison to HFD group, HFA increased hepatic nuclear SIRT1 protein but decreased its deacetylase activity. SREBP-1c protein expression and FAS mRNA levels were significantly upregulated, while DGAT1/2 and CPT-I mRNA levels were downregulated in the livers of HFA compared to HFD. Although hepatic AdipoR1 decreased, HFA did not alter AdipoR2 and their downstream signaling. There were no significant changes in plasma adiponectin and free fatty acids (FFA), as well as adiponectin expression in adipose tissue between the two groups. The present study indicates that suppression in SIRT1 deacetylase activity contributes to alcohol-exacerbated hepatic inflammation and apoptosis in rats with pre-existing NASH. In addition, moderate alcohol intake did not modulate adiponectin/AdipoR signaling axis in this model.
Members of a subfamily of G protein-coupled receptors (GPCRs), encoded by five different endothelial differentiation genes (edgs), specifically mediate effects of lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) on cellular proliferation and differentiation. Mechanisms of suppression of apoptosis by LPA and S1P were studied in the Tsup-1 cultured line of human T lymphoblastoma cells, which express Edg-2 and Edg-4 GPCRs for LPA and Edg-3 and Edg-5 GPCRs for S1P. At 10-10 M to 10-7 M, both LPA and S1P protected Tsup-1 cells from apoptosis induced by Abs to Fas, CD2, and CD3 plus CD28 in combination. Apoptosis elicited by C6 ceramide was inhibited by S1P, but not by LPA, in part because ceramide suppressed expression of Edg-2 and Edg-4 surface receptors for LPA without affecting Edg-3 surface receptors for S1P. At 10-9 M to 10-7 M, LPA and S1P significantly suppressed cellular levels of the apoptosis-promoting protein Bax, without altering the levels of Bcl-xL or Bcl-2 assessed by Western blots and immunoassays. Transfections of pairs of antisense plasmids for Edg-2 plus Edg-4 and Edg-3 plus Edg-5, and hygromycin selection of transfectants with reduced expression of the respective Edg R proteins in Western blots, inhibited both protection from apoptosis and reduction in cellular levels of Bax by LPA and S1P. Thus, LPA and S1P protection from apoptosis is mediated by distinct Edg GPCRs and may involve novel effects on Bax regulatory protein.
BACKGROUND: Laminin, a major component of basement membranes, is well known in its classical heterotrimeric form (B1-A-B2) to regulate diverse biological functions, including cell polarization and differentiation. However, the role of merosin, a laminin-like molecule in which an M chain is substituted for its homologous A chain, remains largely unknown. METHODS: In the present study, we analyzed by indirect immunofluorescence the expression and distribution of these four laminin chains as well as the integrins alpha 2 beta 1, alpha 3 beta 1, alpha 6 beta 1, and alpha 6 beta 4, four potential receptors, at the epithelial-mesenchymal interface of the developing human small intestine, with a panel of specific monoclonal antibodies. RESULTS: Beginning at 7 weeks of gestation and throughout mucosal organogenesis, the B1 and B2 chains were uniformly detected at the epithelial basement membrane. The A chain also was detected beginning at 7 weeks, and its distribution at the basement membrane remained uniform throughout villus (9+ weeks) and crypt (16+ weeks) formation. In contrast, M chain expression was not observed until 16 weeks; between 16 and 20 weeks, it was exclusively associated with the base of epithelial cells that comprised the forming crypts. Integrins alpha 6 beta 1 and alpha 6 beta 4, as determined by their subunit immunolocalization, appeared to be expressed by all enterocytes from 7 to 20 weeks. In contrast, the expression of the alpha 2 beta 1 and alpha 3 beta 1 integrins was found time- and site-restricted. The alpha 2 subunit was predominantly detected in the epithelial cells of the intervillous area and its derivative, the crypt, whereas the alpha 3 subunit was strongly expressed by all epithelial cells except those located at the bottom of 19-20-week-old crypts. CONCLUSIONS: Taken together, these observations demonstrate that both compositional changes in the basement membrane and differential expression of receptors occur during human intestinal organogenesis, suggesting that epithelial cell-matrix interactions play a role during development.
Ovarian cancer is routinely treated with surgery and platinum-based chemotherapy. Resistance is a major obstacle in the efficacy of this chemotherapy regimen and the ability to identify those patients at risk of developing resistance is of considerable clinical importance. The expression of calpain-1, calpain-2 and calpastatin were determined using standard immunohistochemistry on a tissue microarray of 154 primary ovarian carcinomas from patients subsequently treated with platinum-based adjuvant chemotherapy. High levels of calpain-2 expression was significantly associated with platinum resistant tumours (P = 0.031). Furthermore, high expression of calpain-2 was significantly associated with progression-free (P = 0.049) and overall survival (P = 0.006) in this cohort. The association between calpain-2 expression and overall survival remained significant in multivariate analysis accounting for tumour grade, stage, optimal debulking and platinum sensitivity (hazard ratio = 2.174; 95% confidence interval = 1.144-4.130; P = 0.018). The results suggest that determining calpain-2 expression in ovarian carcinomas may allow prognostic stratification of patients treated with surgery and platinum-based chemotherapy. The findings of this study warrant validation in a larger clinical cohort.
The purpose of this study is to determine whether moderate-intensity resistance exercise (MOD) lowers postprandial lipemia (PPL) as much as high-intensity resistance exercise (HI) of equal work. Ten healthy men performed three trials, each conducted over 2 days. On day 1 of each treatment, they either did not exercise (CON), performed 3 sets of 16 repetitions of 10 exercises at 50% of 8 repetitions maximum (MOD), or performed 3 sets of 8 repetitions of 10 exercises at 100% of 8 repetitions maximum (HI). On the morning of day 2 at 15.5 h postexercise, participants ate a high-fat meal. Venous blood samples were collected, and metabolic rate was measured at rest and 3 h postprandial. HI reduced fasting triglyceride (TG) and TG area under the curve (AUC) (36%, P = 0.011 and 35%, P = 0.014) compared with CON. MOD tended to reduce fasting TG and TG AUC (21%, P = 0.054 and 26%, P = 0.052) compared with CON, but MOD and HI did not differ in fasting TG or TG AUC. Incremental TG AUC did not differ among treatments. MOD and HI did not change resting metabolic rate. HI increased fat oxidation at rest (21%, P = 0.021) and at 3 h postprandial (39%, P = 0.009) relative to CON. MOD tended to increase fat oxidation at rest (18%, P = 0.060) relative to CON. Fat oxidation and metabolic rate did not differ in MOD and HI. MOD and HI increased the fasting quantitative insulin-sensitivity check index (4%, P = 0.001 and P = 0.004) relative to CON. As MOD and HI resulted in similar reductions in PPL and increases in fat oxidation, resistance exercise intensity does not influence PPL.
The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning.Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining.Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P less than 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival.We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF.
Transforming growth factor-β (TGF-β), fascin, nuclear factor-kappa B (NF-κB) p105, protein-kinase C-zeta (PKC-ζ), partioning-defective protein-6 (Par-6), E-cadherin and vimentin are tumor promoting molecules through mechanisms involved in cell dedifferentiation. In soft tissue sarcomas, their expression profile is poorly defined and their significance is uncertain. We aimed to investigate the prognostic impact of TGF-β1, NF-κB p105, PKC-ζ, Par-6α, E-cadherin and vimentin in non-gastrointestinal stromal tumor soft tissue sarcomas (non-GIST STSs).Tumor samples and clinical data from 249 patients with non-GIST STS were obtained, and tissue microarrays (TMAs) were constructed for each specimen. Immunohistochemistry (IHC) was used to evaluate marker expression in tumor cells.In univariate analysis, the expression levels of TGF-β1 (P = 0.016), fascin (P = 0.006), NF-κB p105 (P = 0.022) and PKC-ζ, (P = 0.042) were significant indicators for disease specific survival (DSS). In the multivariate analysis, high TGF-β1 expression was an independent negative prognostic factor for DSS (HR = 1.6, 95% CI = 1.1-2.4, P = 0.019) in addition to tumor depth, malignancy grade, metastasis at diagnosis, surgery and positive resection margins.Expression of TGF-β1 was significantly associated with aggressive behavior and shorter DSS in non-GIST STSs.
Abrasion arthroplasty (AAP) is a procedure by which intrinsic cartilage healing is believed to be stimulated. Although clinically accepted for degenerative and traumatic cartilage lesions scientific evidence at a molecular level that proves the effect of AAP is scarce.Mononuclear cells were extracted from postoperative joint effusions 21.5 h post AAP and simple debridement of cartilage lesions. Luminex, ELISA and FACS experiments were performed. Immunohistochemical stainings of cell cultures for cartilage markers were used to confirm the findings.Postoperative joint effusions after AAP showed increased contents of Mononuclear cells compared to Arthroscopic Chondroplasty (ACP). BMP-4 and IGF were increased in AAP as complared to ACP. Mononuclear cells isolated after AAP express the MSC markers CD 73, CD 105, CD 90, CD 44 and are CD34 negative. Chondrogenic differentiation was demonstrated by positive staining for Sox9, collagen II, proteoglycan, chondroitin-4-sulfate.Our results support the clinical application of AAP as a procedure that enhances cartilage repair as an alternative to far more complex procedures that have gained popularity. Furthermore the data presented supports clinical investigations that recommend not to use suction drainage as by this procedure a considerable amount of the regeneratory potential of postoperative joint effusions might be extracted.