Millipore Sigma Vibrant Logo
 

27464-82-0


54 Results Gelişmiş Arama  
Showing
Dokümanlar (53)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Certificate of Analysis 369079_2746082

    Document Type:
    Certificate of Analysis
    Lot Number:
    2746082
    Product Catalog Number:
    369079
    Product Catalog Name:
    Guanidine Hydrochloride - CAS 50-01-1 - Calbiochem
  • Terminal field specificity of forebrain efferent axons to brainstem gustatory nuclei. 19028464

    Rostral forebrain structures like the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) send projections to the nucleus of solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence originates from a shared or distinct population of forebrain neurons. Under electrophysiological guidance, the retrograde tracers fast blue (FB) and fluorogold (FG) or green (GFB) and red (RFB) fluorescent latex microbeads were injected iontophoretically or by pressure pulses (10 ms at 20 psi) into the taste-responsive regions of the NST and the ipsilateral PBN in six rats. Seven days later, the animals were euthanized and tissue sections containing the LH, CeA, BNST, and GC were processed for co-localization of FB and FG or GFB and RFB. The results showed that the CeA is the major source of input to the NST (82.3+/-7.6 cells/section) and the PBN (76.7+/-11.5), compared to the BNST (31.8+/-4.5; 37.0+/-4.8), the LH (35.0+/-5.4; 33.6+/-5.7), and the GC (27.5+/-4.0; 29.0+/-4.6). Of the total number of retrogradely labeled cells, the incidence of tracer co-localization was 17+/-3% in the GC, 17+/-2% in the CeA, 15+/-3% in the BNST and 16+/-1% in the LH. Thus, irrespective of forebrain source the majority of descending input to the gustatory NST and PBN originates from distinct neuronal populations. This arrangement provides an anatomical substrate for differential modulation of taste processing in the first and second central relays of the ascending gustatory system.
    Document Type:
    Reference
    Product Catalog Number:
    AB153
  • Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome. 25309082

    To investigate the role of epidermal growth factor (EGF) in visceral hypersensitivity and its effect on the serotonin transporter (SERT).A rat model for visceral hypersensitivity was established by intra-colonic infusion of 0.5% acetic acid in 10-d-old Sprague-Dawley rats. The visceral sensitivity was assessed by observing the abdominal withdrawal reflex and recording electromyographic activity of the external oblique muscle in response to colorectal distension. An enzyme-linked immunosorbent assay was used to measure the EGF levels in plasma and colonic tissues. SERT mRNA expression was detected by real-time PCR while protein level was determined by Western blot. The correlation between EGF and SERT levels in colon tissues was analyzed by Pearson's correlation analysis. SERT function was examined by tritiated serotonin (5-HT) uptake experiments. Rat intestinal epithelial cells (IEC-6) were used to examine the EGF regulatory effect on SERT expression and function via the EGF receptor (EGFR).EGF levels were significantly lower in the rats with visceral hypersensitivity as measured in plasma (2.639 ± 0.107 ng/mL vs 4.066 ± 0.573 ng/mL, P less than 0.01) and in colonic tissue (3.244 ± 0.135 ng/100 mg vs 3.582 ± 0.197 ng/100 mg colon tissue, P less than 0.01) compared with controls. Moreover, the EGF levels were positively correlated with SERT levels (r = 0.820, P less than 0.01). EGF displayed dose- and time-dependent increased SERT gene expressions in IEC-6 cells. An EGFR kinase inhibitor inhibited the effect of EGF on SERT gene upregulation. SERT activity was enhanced following treatment with EGF (592.908 ± 31.515 fmol/min per milligram vs 316.789 ± 85.652 fmol/min per milligram protein, P less than 0.05) and blocked by the EGFR kinase inhibitor in IEC-6 cells (590.274 ± 25.954 fmol/min per milligram vs 367.834 ± 120.307 fmol/min per milligram protein, P less than 0.05).A decrease in EGF levels may contribute to the formation of visceral hypersensitivity through downregulation of SERT-mediated 5-HT uptake into enterocytes.
    Document Type:
    Reference
    Product Catalog Number:
    AB9726
    Product Catalog Name:
    Anti-Serotonin Transporter Antibody