Millipore Sigma Vibrant Logo
 

305-53-3


1196 Results Gelişmiş Arama  
Showing
Dokümanlar (1.195)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Application Type

Field of Activity

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Integrins modulate fast excitatory transmission at hippocampal synapses. 12524441

    The present study provides the first evidence that adhesion receptors belonging to the integrin family modulate excitatory transmission in the adult rat brain. Infusion of an integrin ligand (the peptide GRGDSP) into rat hippocampal slices reversibly increased the slope and amplitude of excitatory postsynaptic potentials. This effect was not accompanied by changes in paired pulse facilitation, a test for perturbations to transmitter release, or affected by suppression of inhibitory responses, suggesting by exclusion that alterations to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors cause the enhanced responses. A mixture of function-blocking antibodies to integrin subunits alpha(3), alpha(5), and alpha(v) blocked ligand effects on synaptic responses. The ligand-induced increases were (i) blocked by inhibitors of Src tyrosine kinase, antagonists of N-methyl-d-aspartate receptors, and inhibitors of calcium calmodulin-dependent protein kinase II and (ii) accompanied by phosphorylation of both the Thr(286) site on calmodulin-dependent protein kinase II and the Ser(831) site on the GluR1 subunit of the AMPA receptor. N-Methyl-d-aspartate receptor antagonists blocked the latter two phosphorylation events, but Src kinase inhibitors did not. These results point to the conclusion that synaptic integrins regulate glutamatergic transmission and suggest that they do this by activating two signaling pathways directed at AMPA receptors.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Overexpression of calbindin-D28K in hippocampal progenitor cells increases neuronal differentiation and neurite outgrowth. 16278289

    Excitatory stimuli are known to be a potent regulator for induction of neuronal differentiation. Calbindin-D28K buffers intracellular Ca2+ and modifies synaptic functions in neurons. However, the effects of calbindin-D28K on the regulation of activity-induced neuronal differentiation and related biochemical modifications remain unsolved. In the present study, by a gain-of-function study with retroviral vector system and dicer-generated small interfering RNA (d-siRNA) to effectively knock down the expression of calbindin-D28K, we demonstrated that calbindin-D28K at a physiologically relevant level promoted neuronal differentiation and neurite outgrowth. Increase of neuronal differentiation by calbindin-D28K overexpression was concurrent with the expression of basic helix-loop-helix (bHLH) transcriptional factors, phosphorylation of calcium and calmodulin-dependent protein kinase II (CaMKII) and NeuroD at Ser(336). KN-62, a highly specific CaMKII inhibitor, blocked the up-regulation of proneural bHLH genes, p-CaMKII, and pSer(336)NeuroD. Calbindin-D28K appeared to facilitate neuronal differentiation of both fetal and adult hippocampal progenitor cells. Together, these findings establish the novel calbindin-regulated function of CaMKII and NeuroD in control of neuronal differentiation and neurite outgrowth.
    Document Type:
    Reference
    Product Catalog Number:
    05-533
    Product Catalog Name:
    Anti-phospho-CaM Kinase II Antibody, α subunit, (Thr286), clone 22B1
  • Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. 21512135

    Signals emanating from the bone marrow microenvironment, such as stromal cells, are thought to support the survival and proliferation of the malignant cells in patients with myeloproliferative neoplasms (MPN). To examine this hypothesis, we established a coculture platform [cells cocultured directly (cell-on-cell) or indirectly (separated by micropore membrane)] designed to interrogate the interplay between Janus activated kinase 2-V617F (JAK2(V617F))-positive cells and the stromal cells. Treatment with atiprimod, a potent JAK2 inhibitor, caused marked growth inhibition and apoptosis of human (SET-2) and mouse (FDCP-EpoR) JAK2(V617F)-positive cells as well as primary blood or bone marrow mononuclear cells from patients with polycythemia vera; however, these effects were attenuated when any of these cell types were cocultured (cell-on-cell) with human marrow stromal cell lines (e.g., HS5, NK.tert, TM-R1). Coculture with stromal cells hampered the ability of atiprimod to inhibit phosphorylation of JAK2 and the downstream STAT3 and STAT5 pathways. This protective effect was maintained in noncontact coculture assays (JAK2(V617F)-positive cells separated by 0.4-μm-thick micropore membranes from stromal cells), indicating a paracrine effect. Cytokine profiling of supernatants from noncontact coculture assays detected distinctly high levels of interleukin 6 (IL-6), fibroblast growth factor (FGF), and chemokine C-X-C-motif ligand 10 (CXCL-10)/IFN-γ-inducible 10-kD protein (IP-10). Anti-IL-6, -FGF, or -CXCL-10/IP-10 neutralizing antibodies ablated the protective effect of stromal cells and restored atiprimod-induced apoptosis of JAK2(V617F)-positive cells. Therefore, our results indicate that humoral factors secreted by stromal cells protect MPN clones from JAK2 inhibitor therapy, thus underscoring the importance of targeting the marrow niche in MPN for therapeutic purposes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor. 20372971

    We herein report on the activity of the JAK2/JAK3 small molecule inhibitor atiprimod on mouse FDCP-EpoR cells carrying either wild-type (JAK2 (WT)) or mutant (JAK2 (V617F)) JAK2, human acute megakaryoblastic leukemia cells carrying JAK2 (V617F) (SET-2 cell line), and human acute megakaryocytic leukemia carrying mutated JAK3 (CMK cells). Atiprimod inhibited more efficaciously the proliferation of FDCP-EpoR JAK2 (V617F) (IC(50) 0.42 μM) and SET-2 cells (IC(50) 0.53 μM) than that of CMK (IC(50) 0.79 μM) or FDCP-EpoR JAK2 (WT) cells (IC(50) 0.69 μM). This activity was accompanied by inhibition of the phosphorylation of JAK2 and downstream signaling proteins STAT3, STAT5, and AKT in a dose- and time-dependent manner. Atiprimod-induced cell growth inhibition of JAK2 (V617F)-positive cells was coupled with induction of apoptosis, as evidenced by heightened mitochondrial membrane potential and caspase-3 activity, as well as PARP cleavage, increased turnover of the anti-apoptotic X-linked mammalian inhibitor of apoptosis (XIAP) protein, and inhibition of the pro-apoptotic protein BCL-2 in a time- and dose-dependent manner. Furthermore, atiprimod was more effective at inhibiting the proliferation of peripheral blood hematopoietic progenitors obtained from patients with JAK2 (V617F)-positive polycythemia vera than at inhibiting hematopoietic progenitors from normal individuals (p = 0.001). The effect on primary expanded erythroid progenitors was paralleled by a decrease in JAK2(V617F) mutant allele burden in single microaspirated BFU-E and CFU-GM colonies. Taken together, our data supports the clinical testing of atiprimod in patients with hematologic malignancies driven by constitutive activation of JAK2 or JAK3 kinases.
    Document Type:
    Reference
    Product Catalog Number:
    06-596
    Product Catalog Name:
    Anti-STAT3 Antibody
  • Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. 24325916

    Tumorigenesis is a consequence of failures of multistep defense mechanisms against deleterious perturbations that occur at the genomic, epigenomic, transcriptomic and proteomic levels. To uncover previously unrecognized genes that undergo multilevel perturbations in gastric cancer (GC), we integrated epigenomic and transcriptomic approaches using two recently developed tools: MENT and GENT. This integrative analysis revealed that nine Hippo pathway-related genes, including components [FAT, JUB, LATS2, TEA domain family member 4 (TEAD4) and Yes-associated protein 1 (YAP1)] and targets (CRIM1, CYR61, CTGF and ITGB2), are concurrently hypomethylated at promoter CpG sites and overexpressed in GC tissues. In particular, TEAD4, a link between Hippo pathway components and targets, was significantly hypomethylated at CpG site cg21637033 (P = 3.8 × 10(-) (20)) and overexpressed (P = 5.2 × 10(-) (10)) in 108 Korean GC tissues compared with the normal counterparts. A reduced level of methylation at the TEAD4 promoter was significantly associated with poor outcomes, including large tumor size, high-grade tumors and low survival rates. Compared with normal tissues, the TEAD4 protein was more frequently found in the nuclei of tumor cells along with YAP1 in 53 GC patients, demonstrating the posttranslational activation of this protein. Moreover, the knockdown of TEAD4 resulted in the reduced growth of GC cells both in vitro and in vivo. Finally, chromatin immunoprecipitation-sequencing and microarray analysis revealed the oncogenic properties of TEAD4 and its novel targets (ADM, ANG, ARID5B, CALD1, EDN2, FSCN1 and OSR2), which are involved in cell proliferation and migration. In conclusion, the multilevel perturbations of TEAD4 at epigenetic, transcriptional and posttranslational levels may contribute to GC development.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Anti-NFκB p65, CT - 3605533

    Document Type:
    Certificate of Analysis
    Lot Number:
    3605533
    Product Catalog Number:
    06-418
    Product Catalog Name:
    Anti-NFκB p65 Antibody, CT