Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.
Document Type:
Reference
Product Catalog Number:
17-700
Product Catalog Name:
Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
Hypoxia leads to the stabilisation of the hypoxia-inducible factor (HIF) transcription factor that drives the expression of target genes including microRNAs (miRNAs). MicroRNAs are known to regulate many genes involved in tumourigenesis. The aim of this study was to identify hypoxia-regulated miRNAs (HRMs) in bladder cancer and investigate their functional significance.Bladder cancer cell lines were exposed to normoxic and hypoxic conditions and interrogated for the expression of 384 miRNAs by qPCR. Functional studies were carried out using siRNA-mediated gene knockdown and chromatin immunoprecipitations. Apoptosis was quantified by annexin V staining and flow cytometry.The HRM signature for NMI bladder cancer lines includes miR-210, miR-193b, miR-145, miR-125-3p, miR-708 and miR-517a. The most hypoxia-upregulated miRNA was miR-145. The miR-145 was a direct target of HIF-1α and two hypoxia response elements were identified within the promoter region of the gene. Finally, the hypoxic upregulation of miR-145 contributed to increased apoptosis in RT4 cells.We have demonstrated the hypoxic regulation of a number of miRNAs in bladder cancer. We have shown that miR-145 is a novel, robust and direct HIF target gene that in turn leads to increased cell death in NMI bladder cancer cell lines.
Pleomorphic adenoma gene like-2 (PLAGL2), a developmentally regulated and stress inducible zinc finger protein can be post-translationally modified by small ubiquitin-like modifier peptide (SUMO-1); and SUMOylation attenuates PLAGL2 activity on the interactive promoter. Since PLAGL2 was a transactivator of the surfactant protein-C (SP-C) promoter, we hypothesized that SUMOylation down-regulated PLAGL2-activated SP-C promoter activity. Unexpectedly, the SUMO-conjugating enzyme Ubc9 enhanced, rather than reduced, PLAGL2 activated promoter activity but did not affect TTF-1 activation of the promoter. Ubc9 mutant (Ubc9-C93S) defective in SUMO-conjugating activity also enhanced PLAGL2-driven promoter activity suggesting that the stimulatory effect of Ubc9 on SP-C promoter activation was independent of its enzymatic function. PLAGL2 mutants without the K250 and/or K269 SUMOylation sites did not further improve PLAGL2 programmed transcription nor did they abolish Ubc9 enhanced promoter activity supporting the SUMOylation-independent mechanism. Chromatin immunoprecipitation (ChIP) assay demonstrated the association of PLAGL2 and Ubc9 with the SP-C promoter in vivo. Taken together, our data suggests that Ubc9 can function as a co-factor of PLAGL2, uncoupling from its enzymatic activity, to mediate PLAGL2 interactive SP-C promoter activity.
The renin-angiotensin system plays an important role in the regulation of blood pressure via angiotensin II and the angiotensin II receptor type 1 (AT1R). Human AT1R gene promoter has four SNPs: T/A at -777, T/G at -680, A/C at -214, and A/G at -119, that are in linkage disequilibrium. Variants -777T, -680T, -214A, and -119A almost always occur together (named haplotype I), and variants -777A, -680G, -214C, and -119G almost always occur together (named haplotype II) in Caucasian subjects. Genomic DNA analyses, from 388 normotensive and 374 hypertensive subjects, link haplotype I of the human AT1R (hAT1R) gene with hypertension in Caucasians (p = 0.004, χ(2) = 8.46). Our results show increased basal promoter activity of the hAT1R gene in cells (H295R and A7r5) transfected with reporter construct containing haplotype I. We also show increased binding of the transcription factor, USF2, to oligonucleotide containing nucleoside -214A as opposed to -214C. Recombineering of a 166-kb bacterial artificial chromosome containing 68 kb of the 5'-flanking region, 45 kb of the coding sequence, and 53 kb of the 3'-flanking region of the hAT1R gene was employed to generate transgenic mice with either haplotype. We show that (a) hAT1R mRNA level is increased in the kidney and heart of transgenic mice containing haplotype I as compared with haplotype II; (b) USF2 binds more strongly to the chromatin obtained from the kidney of transgenic mice containing haplotype I as compared with haplotype II; and (c) blood pressure and oxidative stress are increased in transgenic mice containing haplotype I as compared with haplotype II.
OBJECTIVE: To determine whether circulating levels of leptin differed between women with preeclampsia and women who had an uncomplicated pregnancy. METHODS: Maternal and umbilical venous plasma leptin concentrations obtained at delivery were compared in 36 pairs of women with either preeclampsia or normal pregnancy, matched 1:1 for prepregnancy body mass index and fetal gestational age at delivery. RESULTS: Prepregnancy body mass index was 21.1 +/- 2.1 kg/m2 in either study group (range 17.6-25.3 kg/m2 and 17.7-25.3 kg/m2 in the normal and preeclamptic group, respectively). Mean fetal gestational age at delivery was 40.1 +/- 1.3 weeks and 40.1 +/- 1.2 weeks in the normal and preeclamptic group, respectively. Median leptin concentrations were significantly lower (P .0001) in women with preeclampsia (8.3 ng/mL, range 3.5-20.0 ng/mL) than in normal pregnant women (20.2 ng/mL, range 6.0-63.7 ng/mL). Median umbilical venous leptin was not significantly different between groups (preeclampsia 11.8 ng/mL, range 2.0-37.2 ng/mL; normal 7.6 ng/mL, range 1.6-24.3 ng/mL; P = .377). Umbilical venous leptin levels correlated positively with birth weight in both groups (preeclampsia rho = 0.501, P = .002; normal rho = 0.517, P = .001), whereas no correlations were found between maternal and fetal hormone concentrations. Maternal leptin concentrations did not correlate with birth weight. CONCLUSION: Our data suggest that the correlation between umbilical venous leptin concentration and birth weight is independent of the presence of preeclampsia. Given the inconsistency in literature concerning circulating leptin levels in preeclampsia, further studies should investigate the regulatory systems of leptin in preeclampsia.
OBJECTIVE: The purpose of this study was to determine whether maternal serum inhibin A and leptin concentrations changed in the first trimester of pregnancy in patients in whom severe preeclampsia subsequently developed. STUDY DESIGN: Blood samples were collected prospectively from patients during the first trimester of prenatal care. Patients in whom severe preeclampsia with no evidence of glucose intolerance or gestational diabetes mellitus subsequently developed were identified (study group, 30 patients) and matched with control subjects in a 1:2 ratio (control group, 60 patients). Inhibin A and leptin concentrations were determined in these first-trimester serum samples for both the study and control groups. RESULTS: Leptin levels were correlated highly with body mass index in both groups but were not correlated with the subsequent onset of preeclampsia. Serum inhibin A concentrations were significantly higher in women in whom preeclampsia subsequently developed than in women in whom it did not. With a specific cutoff value, the estimated odds for severe preeclampsia were almost five times higher in women with high inhibin A concentrations than in women with normal levels (odds ratio, 4.93; 95% CI, 1.83, 13.28). CONCLUSION: High serum inhibin A levels in the first trimester of pregnancy could be used as an early risk marker for preeclampsia.
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here, we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide-dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α, which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore, treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys, Pkd1 conditional knockout postnatal kidneys, and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.
Resistin is a cysteine-rich secreted protein which significantly inhibits phosphorylation of AMP-activated protein kinase in both human and mouse hepatocytes. It has been demonstrated that resistin plays an important role in inducing hepatic insulin resistance. However, whether resistin has other unknown influences on hepatocytes still remains poorly studied. Here, we show that recombinant resistin protein significantly reduces expression of SIRT1, attenuates the interaction between SIRT1 and PPARα as well as PGC-1α, and increases PGC-1α acetyl-lysine levels in HepG2 cells. In line with this, resistin treatment weakens the association between SIRT1 and major satellite repeats and alters the transcription level of SIRT1 target genes in mouse primary hepatocytes. Resistin treatment also significantly increases senescence-associated β-galactosidase activity in mouse primary hepatocytes and this effect can be eliminated by co-treatment with the SIRT1 agonists resveratrol and nicotinamide mononucleotide. Our findings suggest that resistin is a negative regulator of SIRT1 in both human hepatoma cell line HepG2 and mouse hepatocytes and that it might also play an important role in the development of senescence-associated liver diseases.
Document Type:
Reference
Product Catalog Number:
17-409
Product Catalog Name:
EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit