Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Unexplained cardiac arrest (UCA) with documented ventricular fibrillation (VF) is a major cause of sudden cardiac death. Abnormal sympathetic innervations have been shown to be a trigger of ventricular fibrillation. Further, adequate expression of SEMA3A was reported to be critical for normal patterning of cardiac sympathetic innervation. We investigated the relevance of the semaphorin 3A (SEMA3A) gene located at chromosome 5 in the etiology of UCA. Eighty-three Japanese patients diagnosed with UCA and 2,958 healthy controls from two different geographic regions in Japan were enrolled. A nonsynonymous polymorphism (I334V, rs138694505A>G) in exon 10 of the SEMA3A gene identified through resequencing was significantly associated with UCA (combined P = 0.0004, OR 3.08, 95%CI 1.67-5.7). Overall, 15.7% of UCA patients carried the risk genotype G, whereas only 5.6% did in controls. In patients with SEMA3A(I334V), VF predominantly occurred at rest during the night. They showed sinus bradycardia, and their RR intervals on the 12-lead electrocardiography tended to be longer than those in patients without SEMA3A(I334V) (1031±111 ms versus 932±182 ms, P = 0.039). Immunofluorescence staining of cardiac biopsy specimens revealed that sympathetic nerves, which are absent in the subendocardial layer in normal hearts, extended to the subendocardial layer only in patients with SEMA3A(I334V). Functional analyses revealed that the axon-repelling and axon-collapsing activities of mutant SEMA3A(I334V) genes were significantly weaker than those of wild-type SEMA3A genes. A high incidence of SEMA3A(I334V) in UCA patients and inappropriate innervation patterning in their hearts implicate involvement of the SEMA3A gene in the pathogenesis of UCA.
Sporadic colorectal cancers often arise from a region of cells characterized by a "field defect" that has not been well defined molecularly. DNA methylation has been proposed as a candidate mediator of this field defect. The DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is frequently methylated in colorectal cancer. We hypothesized that MGMT methylation could be one of the mediators of field cancerization in the colon mucosa.We studied MGMT promoter methylation by three different bisulfite-based techniques in tumor, adjacent mucosa, and non-adjacent mucosa from 95 colorectal cancer patients and in colon mucosa from 33 subjects with no evidence of cancer. Statistical tests were two-sided.MGMT promoter methylation was present in 46% of the tumors. Patients whose cancer had MGMT promoter methylation also had substantial MGMT promoter methylation in apparently normal adjacent mucosa. This methylation was seen with a quantitative assay in 50% (22/44; 95% confidence interval [CI] = 34% to 65%) of normal samples with MGMT promoter methylation in the adjacent tumors, 6% (3/51; 95% CI = 1% to 16%) of samples without MGMT methylation in adjacent tumors, and 12% (4/33; 95% CI = 3% to 28%) of control samples (P less than .001 for comparison between each of the latter two groups and the first group). MGMT methylation was detected with a more sensitive assay in 94%, 34%, and 27% of these samples, respectively (P less than .001). In grossly normal colonic mucosa of colon cancer patients, methylation was detected 10 cm away from the tumor in 10 of 13 cases. Tumors with MGMT promoter methylation had a higher rate of G-to-A mutation in the KRAS oncogene than tumors without MGMT promoter methylation (10/42 versus 3/46, P = .03). Using a sensitive mutant allele-specific amplification assay for KRAS mutations, we also found KRAS mutations in 12% (3/25; 95% CI = 2.5% to 31%) of colorectal mucosas with detectable MGMT methylation and 3% (2/64; 95% CI = 0.4% to 11%) of colorectal mucosas without MGMT methylation (P = .13).Some colorectal cancers arise from a field defect defined by epigenetic inactivation of MGMT. Detection of this abnormality may ultimately be useful in risk assessment for colorectal cancer.
While it is well documented that the mitogenic actions of estrogens are critical in the development and progression of human breast and some gynecologic cancers, only latest data demonstrate a crucial involvement of estrogen-signaling in the carcinogenesis of non-classical estrogen target tissues, as colon, prostate, lung, skin, and brain. Only recently it has also been found out that the biological effects of estrogens are mediated by two distinct estrogen receptors (ERs), ER? and ER?, and that their relative levels in a given cell are important determinants of response to estradiol and selective estrogen receptor modulators. Indeed, although ER? and ER? have similar structure, they produce different effects, and there is currently increasing evidence that, for some tumors, an imbalanced ER? expression might play a pivotal role in tumor development and progression. However, the prognostic value, the potential significance in predicting response to endocrine therapy, and, eventually, the utility of ER? as a therapeutic target need to be assessed in large-scale and prospective clinical studies. This review examines the experimental and clinical evidences for a role of ER? in carcinogenesis of classical and nonclassical estrogen target tissues. If anomalies of ER? expression could be demonstrated to represent a critical step in the development and progression of some types of cancers, its re-expression by genetic engineering, as well as the use of targeted ER? therapies would constitute new important therapeutic approaches.
Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104-1.390, χ2 = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034-1.688, χ2 = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173-1.509, χ2 = 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110-1.930, χ2 = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are significantly associated with prognosis both in the total cohort and in those tumours which are mismatch repair proficient. CYP26B1 was independently prognostic in a multivariate model both in the whole patient cohort (HR = 1.177, 95%CI = 1.020-1.216, p = 0.026) and in mismatch repair proficient tumours (HR = 1.255, 95%CI = 1.073-1.467, p = 0.004).