Millipore Sigma Vibrant Logo
 

53363-89-6


168 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (168)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Mapping gene expression changes in the fetal rat testis following acute dibutyl phthalate exposure defines a complex temporal cascade of responding cell types. 17881770

    Phthalates are chemical plasticizers used in a variety of consumer products; in rodents, they alter testicular development, leading to decreased testosterone synthesis and maldevelopment of the reproductive tract. Here, our goals were to discover a set of biomarker genes that respond early after relatively low-dose-level dibutyl phthalate (DBP) exposure and map the responding testicular cell types. To identify testicular phthalate biomarker genes, 34 candidate genes were examined by quantitative PCR at 1, 2, 3, or 6 h after exposure of Gestational Day 19 rats to DBP dose levels ranging from 0.1 to 500 mg/kg body weight. Twelve genes (Ctgf, Cxcl10, Dusp6, Edn1, Egr1, Fos, Ier3, Junb, Nr4a1, Stc1, Thbs1, and Tnfrsf12a) were identified with increased expression by 1-3 h at 100 or 500 mg/kg DBP, and 7 of these 12 genes had increased expression by 6 h at 10 mg/kg DBP. Using in situ hybridization of fetal testis cryosections from DBP-exposed rats, the temporal cellular expression of 10 biomarker genes was determined. Genes with a robust response at 1 h (Dusp6, Egr1, Fos, and Thbs1) were induced in peritubular myoid cells. For Egr1 and Fos, the interstitial compartment also showed increased expression at 1 h. Cxcl10 and Nr4a1 were induced by 1-3 h in both sparsely located interstitial cells and peritubular myoid cells. By 3 h, Stc1 was induced in Leydig cells, and Edn1, Ier3, and Tnfrsf12a were increased in Sertoli cells. These data reveal a complex early cascade of phthalate-induced cellular responses in the fetal testis, and for the first time suggest that peritubular myoid cells are an important proximal phthalate target cell.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. 18235104

    The invasion of maternal decidua and uterine spiral arteries by a trophoblast subpopulation called extravillous trophoblast (EVT) is essential for the establishment of a normal placenta and an adequate blood flow toward the fetus. Derangements in these processes underlie pregnancy-related diseases like preeclampsia and intrauterine growth restriction. Many growth factors, growth factor binding proteins, and extracellular matrix components can positively or negatively regulate the proliferation, migration, and/or invasiveness of these EVT cells. RHO GTPases, including RHOA, RAC1, and CDC42, are ubiquitous proteins that control cytoskeletal changes by forming stress fibers and projecting lamellipodia and filopodia during cellular migration. We had previously shown that prostaglandin (PG) E(2) produced in abundance by the decidua promotes the migration of first-trimester human EVTs by increasing the intracellular concentration of calcium and activating calpain. Using our well-characterized immortalized EVT cell line, HTR-8/SVneo, as well as villus explants from first-trimester placentae, this study examined the role of RHO GTPases RAC1 and CDC42 in PGE(2)-mediated migratory responses of these cells. Though a RAC1 inhibitor, NSC23766 as well as RAC1 knockdown by siRNA decreased the migration of HTR-8/SVneo cells in a Transwell migration assay, this inhibition could not be restored by PGE(2) or 17-phenyl trinor PGE(2) (PGE receptor PTGER1 agonist) or PGE(1) Alcohol (PGE receptor PTGER4 agonist). Similar results were noted for EVT cell spreading in villus explants. Furthermore, CDC42 silencing using siRNA inhibited PGE(2)-induced migration of HTR-8/SVneo cells. Finally, the treatment of EVT cells with PGE(2), PTGER1 agonist, or PTGER4 agonist activated RAC1 and CDC42 at 10 min, suggesting that RAC1 and CDC42 play an essential role in PGE(2)-mediated migration of human EVTs.
    Document Type:
    Reference
    Product Catalog Number:
    05-389
    Product Catalog Name:
    Anti-Rac1 Antibody, clone 23A8
  • Ontogeny and cellular localization of 125I-labeled insulin-like growth factor-I, 125I-labeled follicle-stimulating hormone, and 125I-labeled human chorionic gonadotropin ... 1477207

    In a previous study we reported that ovaries from bovine fetuses, which consist mainly of preantral follicles with few antral follicles, are weakly responsive to gonadotropins (FSH and LH). Insulin-like growth factor-I (IGF-I) is known to enhance gonadotropin responsiveness in vitro, but there is a lack of consistent data on the involvement of IGF-I, FSH, and LH during early stages of folliculogenesis in cattle. In the study reported here, we assessed autoradiographically the ontogeny of 125I-gonadotropin and 125I-IGF-I binding activities during preantral and early antral stages in cattle. Follicular growth was initiated around Day 180 of gestation in fetuses. The density of 125I-FSH binding was high in granulosa cells from primary (mean +/- SEM 10.5 +/- 0.7 grains/cell, 0.05-mm diam.) and secondary follicles (10.8 +/- 0.8 to 13.6 +/- 1.2 grains/cell, 0.06-0.15 mm) but increased significantly (p < 0.05) in early antral follicles (18.2 +/- 1.1 grains/cell, 0.16-3.0 mm). Specific 125I-IGF-I binding levels were low in granulosa cells from preantral follicles, averaging 2.5 +/- 0.6-3.1 +/- 0.9 grains/cell. However, after antrum formation, the density of 125I-IGF-I binding increased significantly (p < 0.05) with follicular diameter in granulosa cells and was 5.7 +/- 0.7 and 9.1 +/- 0.6 grains/cell for antral I (0.16-0.5 mm) and antral II (0.6-3.0 mm) follicles, respectively. 125I-FSH and 125I-IGF-I binding densities were low in theca cells from preantral and early antral follicles as well as in the interstitial tissue and granulosa cells from atretic follicles.(ABSTRACT TRUNCATED AT 250 WORDS)
    Document Type:
    Reference
    Product Catalog Number:
    20-176
    Product Catalog Name:
    100X GTPγS, 10mM
  • The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. 1536908

    To clarify the mechanisms by which progesterone acts as a mediator in the ovulatory process, ovulation rate and proteolytic enzyme activities were investigated in immature 22-day-old rats treated with PMSG/hCG, RU486 (10 mg/kg), synthetic antiprogesterone, and RU486 (10 mg/kg) + progesterone (10 mg/kg). The number of ova was significantly decreased when RU486 (10 mg/kg) was given from 2 h before to 4 h after the hCG injection. In addition, its inhibitory action on ovulation was reversed by exogenous progesterone (10 mg/kg) at 2 or 4 h after the hCG injection. Serum progesterone and estradiol concentrations in the rats treated with RU486 did not show any significant differences compared to controls. The proteolytic enzyme activities were measured by using the synthetic substrates alpha-N-benzoyl-DL-Arg-beta naphthylamide (BANA) and dinitrophenyl peptide (DNP). Activities were significantly increased after hCG injection in the control group during 8-9 h for BANA hydrolase and 7-10 h for DNP peptidase. The preovulatory increase of these activities was totally suppressed by RU486 with hCG. After administration of progesterone (10 mg/kg) following hCG and RU486 injection, the elevation of proteolytic, enzyme activities in the preovulatory phase was effectively reversed, and levels became similar to those in the control group. These results suggest that progesterone plays an indispensable role in the first 4 h of the ovulatory process by regulating proteolytic enzyme activities.
    Document Type:
    Reference
    Product Catalog Number:
    20-176
    Product Catalog Name:
    100X GTPγS, 10mM
  • Retinol-binding protein: a major secretory product of the pig conceptus. 2340335

    Pig conceptuses and endometrial explants recovered from gilts between Days 10 and 15 of pregnancy were cultured in leucine-deficient or methionine-deficient medium supplemented with 3H-leucine or 35S-methionine, respectively, for 30 h. Conceptus and endometrial tissues from Day 15 of pregnancy were fixed in Bouin's fixative for immunocytochemistry and light microscopy. Conceptus culture medium from Day 15 of pregnancy was pooled, dialyzed, and fractionated by anion exchange and gel filtration chromatography. A family of 3-5 low molecular weight (Mr) acidic (Mr = 19,000-22,000; pI = 5.6-6.5) 3H-leu-labeled proteins were isolated and identified by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), electroblotting, and fluorography. The two major proteins (pCSP-1 and pCSP-2) were excised from a polyvinylidene difluoride transfer membrane, and NH2-terminal amino acids were sequenced. One peptide was sequenced through 33 amino acids and the second, which shared 100% homology, was sequenced through 22 amino acids. Analysis of the larger sequence indicated that it shared 93.9% and 90.9% homology with the first 33 amino acids of human and rabbit plasma retinol-binding protein (RBP), respectively. Analyses of culture medium from pig conceptus incubations by 2D-PAGE and immunoprecipitation with rabbit anti-human RBP serum indicated that immunoreactive RBP was produced between Days 10 and 15 of pregnancy and was present in Day 30 allantoic fluid. Western blotting of enriched fractions of Day 15 conceptus RBP followed by immunostaining indicated that five isoforms of radiolabeled RBP were present. Immunoreactive RBP was detected in trophectoderm and yolk sac of conceptuses and endometrial surface and glandular epithelium at Day 15 of pregnancy. Results from this study demonstrate that pig conceptuses secrete RBP prior to onset of conceptus elongation and throughout the peri-implantation period, which suggests that RBP and associated retinoids influence conceptus development.
    Document Type:
    Reference
    Product Catalog Number:
    20-176
    Product Catalog Name:
    100X GTPγS, 10mM
  • Langerhans cells and T lymphocyte subsets in the murine vagina and cervix. 2015366

    Immunization in the vagina can lead to the production of specific antibodies in the luminal fluid of this organ. To help understand the immune mechanisms involved in this process, we have studied the occurrence of Langerhans cells (LCs), macrophages, natural killer cells, and T and B lymphocytes in the murine vagina and cervix during the estrous cycle. LCs in the epithelia expressed Ia, F4/80, NLDC-145, and CD45, but not Mac-1, Moma-1, and Moma-2; double-labeling demonstrated phenotypic heterogeneity in this population Ia+, NLDC-145+; Ia+, NLDC-145-; Ia+, F4/80+; Ia+, F4/80-; Ia- F4/80+. T lymphocytes of both helper and cytotoxic/suppressor types were also present in the epithelia, sometimes in close association with LCs, but natural killer cells were not observed. The stroma of the vagina and cervix contained LCs (or interdigitating cells) and macrophages but few T lymphocytes and no B lymphocytes, natural killer cells, or lymphoid nodules. These observations confirm and extend previous reports that the murine vagina and cervix contain epithelial LCs and T lymphocytes and support the suggestion that antigens in the vagina and cervix, as in the epidermis, may be recognized and presented to the immune system by epithelial LCs. However, the paucity of T cells and the absence of B cells and lymphoid nodules from the stroma suggest that antigen presentation may not occur locally but at another site such as in the draining lymph nodes.
    Document Type:
    Reference
    Product Catalog Number:
    17-191
    Product Catalog Name:
    MAP Kinase/Erk Assay Kit, non-radioactive
  • Potential utility of BimS as a novel apoptotic therapeutic molecule. 15336653

    We have previously demonstrated a 1000-fold induction of gene expression exclusive to Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC) cells using an adenoviral vector (ad5.oriP). This platform allows us to explore tumor-specific gene therapy with BimS (ad5.oriP.BimS), a potent proapoptotic Bcl-2 family member. Ad5.oriP.BimS (25 infectious units (ifu)/cell) reduced C666-1 viability in a time- and dose-dependent manner to 15% survival. The effect was enhanced with radiation (6 Gy). Three days after infection, the proportion of apoptotic cells increased from 3.5% (control) to 47.5% (25 ifu/cell). Confocal microscopy demonstrated Bim colocalization to the mitochondria within 18 h of ad5.oriP.BimS infection. Ad5.oriP.BimS induced a 2.8-, 2.1-, and 1.85-fold increase in caspase-3, -8, and -9 activities, respectively. When C666-1 cells were infected with ad5.oriP.BimS (20 ifu/cell), no tumors formed in 7/9 mice followed for 100 days. Six intratumoral injections of ad5.oriP.BimS (1.5 x 10(9) ifu/dose) in combination with radiation were sufficient to cause almost complete disappearance of established C666-1 or C15 xenograft tumors. Intravenous injections of ad5.oriP.BimS (10(9) ifu) induced mild perturbation in liver function tests, associated with hepatocyte apoptoses and mitoses. This vector appears to be safe and effectively cytotoxic to EBV-positive NPC cells both in vitro and in vivo, mediated primarily through the induction of apoptosis.
    Document Type:
    Reference
    Product Catalog Number:
    AB3579
    Product Catalog Name:
    Anti-BimEL (pS69) human / (pS65) rat Antibody
  • Pleiotropic Control of Secondary Metabolism and Morphological Development by KsbC, a Butyrolactone Autoregulator Receptor Homologue in Kitasatospora setae. 22961899

    The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.
    Document Type:
    Reference
    Product Catalog Number:
    20-108
    Product Catalog Name:
    Assay Dilution Buffer I (ADBI)