Millipore Sigma Vibrant Logo
 

5704-04-1


663 Results Gelişmiş Arama  
Showing
Dokümanlar (660)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • The angiogenic factor angiopoietin-1 is a proneurogenic peptide on subventricular zone stem/progenitor cells. 20357108

    In the adult mammalian brain, the subventricular zone (SVZ) hosts stem cells constantly generating new neurons. Angiopoietin-1 (Ang-1) is an endothelial growth factor with a critical role in division, survival, and adhesion of endothelial cells via Tie-2 receptor activity. Expression of Tie-2 in nonendothelial cells, especially neurons and stem cells, suggests that Ang-1 may be involved in neurogenesis. In the present work, we investigated the putative role of Ang-1 on SVZ neurogenesis. Immature cells from SVZ-derived neurospheres express Ang-1 and Tie-2 mRNA, suggesting a role for the Ang-1/Tie-2 system in the neurogenic niche. Moreover, we also found that Tie-2 protein expression is retained on differentiation in neurons and glial cells. Ang-1 triggered proliferation via activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) mitogen-activated protein kinase (MAPK) kinase pathway but did not induce cell death. Accordingly, coincubation with an anti-Tie-2 neutralizing antibody prevented the pro-proliferative effect of Ang-1. Furthermore, Ang-1 increased the number of NeuN (neuronal nuclear protein)-positive neurons in cultures treated for 7 d, as well as the number of functional neurons, as assessed by monitoring [Ca(2+)](i) rises after application of specific stimuli for neurons and immature cells. The proneurogenic effect of Ang-1 is mediated by Tie-2 activation and subsequent mTOR (mammalian target of rapamycin kinase) mobilization. In agreement, neuronal differentiation significantly decreased after exposure to an anti-Tie-2 neutralizing antibody and to rapamycin. Moreover, Ang-1 elicited the activation of the SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase) MAPK, involved in axonogenesis. Our work shows a proneurogenic effect of Ang-1, highlighting the relevance of blood vessel/stem cell cross talk in health and disease.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Epithelial-to-mesenchymal transition and oxidative stress in chronic allograft nephropathy. 15707404

    Epithelial-to-mesenchymal transition (EMT) and oxidative stress contribute to kidney tissue fibrosis in various forms of native kidney disease. However, their role in chronic allograft nephropathy (CAN) remains somewhat uncertain. To address this question, kidney transplants were performed in 3-month-old rats, using the Fisher 344 --> Lewis model of CAN. Six-month posttransplant, kidney allografts displayed significant tubular atrophy, interstitial fibrosis and vascular wall thickening. Allograft recipients had significantly higher levels of serum creatinine (4.7 +/- 1.3 versus 0.59 +/- 0.08 mg/dL, p = 0.03) and proteinuria (380 +/- 102 versus 30.2 +/- 8 mg/dL, p = 0.04) compared to syngeneic grafts. Semiquantitative PCR, immunoblot and immunohistochemical analyses demonstrated increased alpha-smooth muscle actin (alpha-SMA) mRNA and protein levels coupled with reduced E-cadherin mRNA and protein immunoreactivity, confirming the presence of CAN-associated EMT. Allograft alpha-SMA levels were increased as early as 1-2 weeks posttransplant. Immunohistochemical studies for collagen type I and III, superoxide anion (O(2) (-)), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) confirmed that tubular O(2) (-), eNOS and iNOS, and interstitial collagen I, III and O(2) (-) levels were significantly increased in CAN-associated EMT. In conclusion, these observations suggest that CAN-associated EMT may be a link between oxidative stress and allograft fibrosis.
    Document Type:
    Reference
    Product Catalog Number:
    AB755P
    Product Catalog Name:
    Anti-Rat Collagen Type I Antibody
  • ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer. 21212265

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Certificate of Analysis 504041_D00147265

    Document Type:
    Certificate of Analysis
    Lot Number:
    D00147265
    Product Catalog Number:
    504041
    Product Catalog Name:
    CaCC Blocker IV, Benzbromarone - CAS 3562-84-3 - Calbiochem